Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38929504

RESUMO

Background and Objectives: The aim of this study is to present our experience in the surgical treatment of calcified thoracic herniated disc disease via a transthoracic approach in the lateral position with the use of intraoperative computed tomography (iCT) and augmented reality (AR). Materials and Methods: All patients who underwent surgery for calcified thoracic herniated disc via a transthoracic transpleural approach at our Department using iCT and microscope-based AR were included in the study. Results: Six consecutive patients (five female, median age 53.2 ± 6.4 years) with calcified herniated thoracic discs (two patients Th 10-11 level, two patients Th 7-8, one patient Th 9-10, one patient Th 11-12) were included in this case series. Indication for surgery included evidence of a calcified thoracic disc on magnet resonance imaging (MRI) and CT with spinal canal stenosis of >50% of diameter, intractable pain, and neurological deficits, as well as MRI-signs of myelopathy. Five patients had paraparesis and ataxia, and one patient had no deficit. All surgeries were performed in the lateral position via a transthoracic transpleural approach (Five from left side). CT for automatic registration was performed following the placement of the reference array, with a high registration accuracy. Microscope-based AR was used, with segmented structures of interest such as vertebral bodies, disc space, herniated disc, and dural sac. Mean operative time was 277.5 ± 156 min. The use of AR improved orientation in the operative field for identification, and tailored the resection of the herniated disc and the identification of the course of dural sac. A control-iCT scan confirmed the complete resection in five patients and incomplete resection of the herniated disc in one patient. In one patient, complications occurred, such as postoperative hematoma, and wound healing deficit occurred. Mean follow-up was 22.9 ± 16.5 months. Five patients improved following surgery, and one patient who had no deficits remained unchanged. Conclusions: Optimal surgical therapy in patients with calcified thoracic disc disease with compression of dural sac and myelopathy was resectioned via a transthoracic transpleural approach. The use of iCT-based registration and microscope-based AR significantly improved orientation in the operative field and facilitated safe resection of these lesions.


Assuntos
Realidade Aumentada , Deslocamento do Disco Intervertebral , Vértebras Torácicas , Tomografia Computadorizada por Raios X , Humanos , Feminino , Pessoa de Meia-Idade , Deslocamento do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Masculino , Tomografia Computadorizada por Raios X/métodos , Vértebras Torácicas/cirurgia , Vértebras Torácicas/diagnóstico por imagem , Calcinose/cirurgia , Calcinose/diagnóstico por imagem , Adulto , Microscopia/métodos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Degeneração do Disco Intervertebral
2.
Medicina (Kaunas) ; 60(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38929549

RESUMO

Background and Objectives: Microsurgical resection with intraoperative neuromonitoring is the gold standard for acoustic neurinomas (ANs) which are classified as T3 or T4 tumors according to the Hannover Classification. Microscope-based augmented reality (AR) can be beneficial in cerebellopontine angle and lateral skull base surgery, since these are small areas packed with anatomical structures and the use of this technology enables automatic 3D building of a model without the need for a surgeon to mentally perform this task of transferring 2D images seen on the microscope into imaginary 3D images, which then reduces the possibility of error and provides better orientation in the operative field. Materials and Methods: All patients who underwent surgery for resection of ANs in our department were included in this study. Clinical outcomes in terms of postoperative neurological deficits and complications were evaluated, as well as neuroradiological outcomes for tumor remnants and recurrence. Results: A total of 43 consecutive patients (25 female, median age 60.5 ± 16 years) who underwent resection of ANs via retrosigmoid osteoclastic craniotomy with the use of intraoperative neuromonitoring (22 right-sided, 14 giant tumors, 10 cystic, 7 with hydrocephalus) by a single surgeon were included in this study, with a median follow up of 41.2 ± 32.2 months. A total of 18 patients underwent subtotal resection, 1 patient partial resection and 24 patients gross total resection. A total of 27 patients underwent resection in sitting position and the rest in semi-sitting position. Out of 37 patients who had no facial nerve deficit prior to surgery, 19 patients were intact following surgery, 7 patients had House Brackmann (HB) Grade II paresis, 3 patients HB III, 7 patients HB IV and 1 patient HB V. Wound healing deficit with cerebrospinal fluid (CSF) leak occurred in 8 patients (18.6%). Operative time was 317.3 ± 99 min. One patient which had recurrence and one further patient with partial resection underwent radiotherapy following surgery. A total of 16 patients (37.2%) underwent resection using fiducial-based navigation and microscope-based AR, all in sitting position. Segmented objects of interest in AR were the sigmoid and transverse sinus, tumor outline, cranial nerves (CN) VII, VIII and V, petrous vein, cochlea and semicircular canals and brain stem. Operative time and clinical outcome did not differ between the AR and the non-AR group. However, use of AR improved orientation in the operative field for craniotomy planning and microsurgical resection by identification of important neurovascular structures. Conclusions: The single-center experience of resection of ANs showed a high rate of gross total (GTR) and subtotal resection (STR) with low recurrence. Use of AR improves intraoperative orientation and facilitates craniotomy planning and AN resection through early improved identification of important anatomical relations to structures of the inner auditory canal, venous sinuses, petrous vein, brain stem and the course of cranial nerves.


Assuntos
Realidade Aumentada , Microcirurgia , Neuroma Acústico , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Microcirurgia/métodos , Neuroma Acústico/cirurgia , Idoso , Adulto , Procedimentos Neurocirúrgicos/métodos , Microscopia/métodos , Resultado do Tratamento , Imageamento Tridimensional/métodos
3.
Cancers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893106

RESUMO

Despite its broad use in cranial and spinal surgery, navigation support and microscope-based augmented reality (AR) have not yet found their way into posterior fossa surgery in the sitting position. While this position offers surgical benefits, navigation accuracy and thereof the use of navigation itself seems limited. Intraoperative ultrasound (iUS) can be applied at any time during surgery, delivering real-time images that can be used for accuracy verification and navigation updates. Within this study, its applicability in the sitting position was assessed. Data from 15 patients with lesions within the posterior fossa who underwent magnetic resonance imaging (MRI)-based navigation-supported surgery in the sitting position were retrospectively analyzed using the standard reference array and new rigid image-based MRI-iUS co-registration. The navigation accuracy was evaluated based on the spatial overlap of the outlined lesions and the distance between the corresponding landmarks in both data sets, respectively. Image-based co-registration significantly improved (p < 0.001) the spatial overlap of the outlined lesion (0.42 ± 0.30 vs. 0.65 ± 0.23) and significantly reduced (p < 0.001) the distance between the corresponding landmarks (8.69 ± 6.23 mm vs. 3.19 ± 2.73 mm), allowing for the sufficient use of navigation and AR support. Navigated iUS can therefore serve as an easy-to-use tool to enable navigation support for posterior fossa surgery in the sitting position.

4.
World Neurosurg ; 187: e233-e256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642835

RESUMO

BACKGROUND: Our study presents a single-center experience of resection of intradural spinal tumors either with or without using intraoperative computed tomography-based registration and microscope-based augmented reality (AR). Microscope-based AR was recently described for improved orientation in the operative field in spine surgery, using superimposed images of segmented structures of interest in a two-dimensional or three-dimensional mode. METHODS: All patients who underwent surgery for resection of intradural spinal tumors at our department were retrospectively included in the study. Clinical outcomes in terms of postoperative neurologic deficits and complications were evaluated, as well as neuroradiologic outcomes for tumor remnants and recurrence. RESULTS: 112 patients (57 female, 55 male; median age 55.8 ± 17.8 years) who underwent 120 surgeries for resection of intradural spinal tumors with the use of intraoperative neuromonitoring were included in the study, with a median follow-up of 39 ± 34.4 months. Nine patients died during the follow-up for reasons unrelated to surgery. The most common tumors were meningioma (n = 41), schwannoma (n = 37), myopapillary ependymomas (n = 12), ependymomas (n = 10), and others (20). Tumors were in the thoracic spine (n = 46), lumbar spine (n = 39), cervical spine (n = 32), lumbosacral spine (n = 1), thoracic and lumbar spine (n = 1), and 1 tumor in the cervical, thoracic, and lumbar spine. Four biopsies were performed, 10 partial resections, 13 subtotal resections, and 93 gross total resections. Laminectomy was the common approach. In 79 cases, patients experienced neurologic deficits before surgery, with ataxia and paraparesis as the most common ones. After surgery, 67 patients were unchanged, 49 improved and 4 worsened. Operative time, extent of resection, clinical outcome, and complication rate did not differ between the AR and non-AR groups. However, the use of AR improved orientation in the operative field by identification of important neurovascular structures. CONCLUSIONS: High rates of gross total resection with favorable neurologic outcomes in most patients as well as low recurrence rates with comparable complication rates were noted in our single-center experience. AR improved intraoperative orientation and increased surgeons' comfort by enabling early identification of important anatomic structures; however, clinical and radiologic outcomes did not differ, when AR was not used.


Assuntos
Neoplasias da Medula Espinal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias da Medula Espinal/cirurgia , Neoplasias da Medula Espinal/diagnóstico por imagem , Adulto , Idoso , Estudos Retrospectivos , Procedimentos Neurocirúrgicos/métodos , Resultado do Tratamento , Complicações Pós-Operatórias/epidemiologia , Tomografia Computadorizada por Raios X , Ependimoma/cirurgia , Ependimoma/diagnóstico por imagem , Adulto Jovem , Meningioma/cirurgia , Meningioma/diagnóstico por imagem , Recidiva Local de Neoplasia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA