Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(16): 7675-7682, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578323

RESUMO

The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.

2.
Sci Rep ; 12(1): 17526, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266305

RESUMO

The magnetic phase diagram of Sr[Formula: see text]Ca[Formula: see text]Co[Formula: see text]P[Formula: see text] as a function of hydrostatic pressure and temperature is investigated by means of high pressure muon spin rotation, relaxation and resonance ([Formula: see text]SR). The weak pressure dependence for the [Formula: see text] compounds suggests that the rich phase diagram of Sr[Formula: see text]Ca[Formula: see text]Co[Formula: see text]P[Formula: see text] as a function of x at ambient pressure may not solely be attributed to chemical pressure effects. The [Formula: see text] compound on the other hand reveals a high pressure dependence, where the long range magnetic order is fully suppressed at [Formula: see text] kbar, which seem to be a first order transition. In addition, an intermediate phase consisting of magnetic domains is formed above [Formula: see text] kbar where they co-exist with a magnetically disordered state. These domains are likely to be ferromagnetic islands (FMI) and consist of an high- (FMI-[Formula: see text]) and low-temperature (FMI-[Formula: see text]) region, respectively, separated by a phase boundary at [Formula: see text] K. This kind of co-existence is unusual and is originating from a coupling between lattice and magnetic degrees of freedoms.

3.
J Phys Condens Matter ; 34(32)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640576

RESUMO

X-ray absorption and resonant inelastic x-ray scattering spectra of LaPt2Si2single crystal at the Si 2pand La 4dedges are presented. The data are interpreted in terms of density functional theory, showing that the Si spectra can be described in terms of Sisanddlocal partial density of states (LPDOS), and the La spectra are due to quasi-atomic local 4fexcitations. Calculations show that Ptd-LPDOS dominates the occupied states, and a sharp localized Lafstate is found in the unoccupied states, in line with the observations.

4.
Phys Chem Chem Phys ; 23(42): 24478-24486, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34698733

RESUMO

Sodium transition metal oxides with a layered structure are one of the most widely studied cathode materials for Na+-ion batteries. Since the mobility of Na+ in such cathode materials is a key factor that governs the performance of material, electrochemical and muon spin rotation and relaxation techniques are here used to reveal the Na+-ion mobility in a P2-type Na0.5MgxNi0.17-xMn0.83O2 (x = 0, 0.02, 0.05 and 0.07) cathode material. Combining electrochemical techniques such as galvanostatic cycling, cyclic voltammetry, and the galvanostatic intermittent titration technique with µ+SR, we have successfully extracted both self-diffusion and chemical-diffusion under a potential gradient, which are essential to understand the electrode material from an atomic-scale viewpoint. The results indicate that a small amount of Mg substitution has strong effects on the cycling performance and the Na+ mobility. Amongst the tested cathode systems, it was found that the composition with a Mg content of x = 0.02 resulted in the best cycling stability and highest Na+ mobility based on electrochemical and µ+SR results. The current study clearly shows that for developing a new generation of sustainable energy-storage devices, it is crucial to study and understand both the structure as well as dynamics of ions in the material on an atomic level.

5.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193430

RESUMO

Charge order is universal to all hole-doped cuprates. Yet, the driving interactions remain an unsolved problem. Electron-electron interaction is widely believed to be essential, whereas the role of electron-phonon interaction is unclear. We report an ultrahigh-resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La1.675Eu0.2Sr0.125CuO4 Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that, in addition to electronic correlations, electron-phonon coupling contributes substantially to the emergence of long-range charge-stripe order in cuprates.

6.
Chem Soc Rev ; 50(6): 3990-4030, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33576756

RESUMO

The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials.

7.
Inorg Chem ; 60(2): 507-514, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33395280

RESUMO

We report the successful synthesis, crystal structure, and electrical properties of Sr3Re2O9, which contains Re6+ with the 5d1 configuration. This compound is isostructural with Ba3Re2O9 and shows a first-order structural phase transition at ∼370 K. The low-temperature (LT) phase crystallizes in a hettotype structure of Ba3Re2O9, which is different from that of the LT phase of Sr3W2O9, suggesting that the electronic state of Re6+ plays an important role in determining the crystal structure of the LT phase. The structural transition is accompanied by a sharp change in the electrical resistivity. This is likely a metal-insulator transition, as suggested by the electronic band calculation and magnetic susceptibility. In the LT phase, the ReO6 octahedra are rotated in a pseudo-a0a0a+ manner in Glazer notation, which corresponds to C-type orbital ordering. Paramagnetic dipole moments were confirmed to exist in the LT phase by muon spin rotation and relaxation measurements. However, the dipole moments shrink greatly because of the strong spin-orbit coupling in the Re ions. Thus, the electronic state of the LT phase corresponds to a Mott insulating state with strong spin-orbit interactions at the Re sites.

8.
Inorg Chem ; 59(24): 17970-17980, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33264565

RESUMO

The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3̅m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices.

9.
Sci Rep ; 10(1): 18305, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110126

RESUMO

In the quest for developing novel and efficient batteries, a great interest has been raised for sustainable K-based honeycomb layer oxide materials, both for their application in energy devices as well as for their fundamental material properties. A key issue in the realization of efficient batteries based on such compounds, is to understand the K-ion diffusion mechanism. However, investigation of potassium-ion (K[Formula: see text]) dynamics in materials using e.g. NMR and related techniques has so far been very challenging, due to its inherently weak nuclear magnetic moment, in contrast to other alkali ions such as lithium and sodium. Spin-polarised muons, having a high gyromagnetic ratio, make the muon spin rotation and relaxation ([Formula: see text]SR) technique ideal for probing ions dynamics in these types of energy materials. Here we present a study of the low-temperature magnetic properties as well as K[Formula: see text] dynamics in honeycomb layered oxide material [Formula: see text] using mainly the [Formula: see text]SR technique. Our low-temperature [Formula: see text]SR results together with complementary magnetic susceptibility measurements find an antiferromagnetic transition at [Formula: see text] K. Further [Formula: see text]SR studies performed at higher temperatures reveal that potassium ions (K[Formula: see text]) become mobile above 200 K and the activation energy for the diffusion process is obtained as [Formula: see text] meV. This is the first time that K[Formula: see text] dynamics in potassium-based battery materials has been measured using [Formula: see text]SR. Assisted by high-resolution neutron diffraction, the temperature dependence of the K-ion self diffusion constant is also extracted. Finally our results also reveal that K-ion diffusion occurs predominantly at the surface of the powder particles. This opens future possibilities for potentially improving ion diffusion as well as K-ion battery device performance using nano-structuring and surface coatings of the particles.

10.
Chem Commun (Camb) ; 56(65): 9272-9275, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657292

RESUMO

Honeycomb layered oxides from Na2Ni2-xCoxTeO6 family were assessed for use as positive electrodes in rechargeable sodium batteries at ambient and elevated temperatures using ionic liquids. Substitution of nickel with cobalt increases the discharge voltage to nearly 4 V (versus Na+/Na), surpassing the average voltages of most Na based layered oxide positive electrodes.

11.
ACS Appl Mater Interfaces ; 12(14): 16243-16249, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163263

RESUMO

Detailed understanding of charge diffusion processes in a lithium-ion battery is crucial to enable its systematic improvement. Experimental investigation of diffusion at the interface between active particles and the electrolyte is challenging but warrants investigation as it can introduce resistances that, for example, limit the charge and discharge rates. Here, we show an approach to study diffusion at interfaces using muon spin spectroscopy. By performing measurements on LiFePO4 platelets with different sizes, we determine how diffusion through the LiFePO4 (010) interface differs from that in the center of the particle (i.e., bulk diffusion). We perform ab initio calculations to aid the understanding of the results and show the relevance of our interfacial diffusion measurement to electrochemical performance through cyclic voltammetry measurements. These results indicate that surface engineering can be used to improve the performance of lithium-ion batteries.

12.
J Chem Phys ; 150(24): 244704, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255092

RESUMO

The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H2 gas, as well as the formation of carbidic and graphitic surface carbon.

13.
Inorg Chem ; 58(21): 14304-14315, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964663

RESUMO

Anomalous successive structural transitions in layered 1T-CrSe2 with an unusual Cr4+ valency were investigated by synchrotron X-ray diffraction. 1T-CrSe2 exhibits dramatic structural changes in in-plane Cr-Cr and interlayer Se-Se distances, which originate from two interactions: (i) in-plane Cr-Cr interactions derived from Peierls-like trimerization instabilities on the orbitally assisted one-dimensional chains and (ii) interlayer Se-Se interactions through p-p hybridization. As a result, 1T-CrSe2 has the unexpected ground state of an antiferromagnetic metal with multiple Cr linear trimers with three-center-two-electron σ bonds. Interestingly, partial substitution of Se for S atoms in 1T-CrSe2 changes the ground state from an antiferromagnetic metal to an insulator without long-range magnetic ordering, which is due to the weakening of interlayer interactions between anions. The unique low-temperature structures and electronic states of this system are determined by the competition and cooperation of in-plane Cr-Cr and interlayer Se-Se interactions.

14.
Sci Rep ; 9(1): 1141, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718649

RESUMO

The K2Cr8O16 compound belongs to a series of quasi-1D compounds with intriguing magnetic properties that are stabilized through a high-pressure synthesis technique. In this study, a muon spin rotation, relaxation and resonance (µ+SR) technique is used to investigate the pressure dependent magnetic properties up to 25 kbar. µ+SR allows for measurements in true zero applied field and hereby access the true intrinsic material properties. As a result, a refined temperature/pressure phase diagram is presented revealing a novel low temperature/high pressure (pC1 = 21 kbar) transition from a ferromagnetic insulating to a high-pressure antiferromagnetic insulator. Finally, the current study also indicates the possible presence of a quantum critical point at pC2 ~ 33 kbar where the magnetic order in K2Cr8O16 is expected to be fully suppressed even at T = 0 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA