Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37217284

RESUMO

In the immediate time after weaning, piglets often show symptoms of gut inflammation. The change to a plant-based diet, lack of sow milk, and the resulting novel gut microbiome and metabolite profile in digesta may be causative factors for the observed inflammation. We used the intestinal loop perfusion assay (ILPA) to investigate jejunal and colonic expression of genes for antimicrobial secretion, oxidative stress, barrier function, and inflammatory signaling in suckling and weaned piglets when exposed to "plant-oriented" microbiome (POM) representing postweaning digesta with gut-site specific microbial and metabolite composition. Two serial ILPA were performed in two replicate batches, with 16 piglets preweaning (days 24 to 27) and 16 piglets postweaning (days 38 to 41). Two jejunal and colonic loops were perfused with Krebs-Henseleit buffer (control) or with the respective POM for 2 h. Afterward, RNA was isolated from the loop tissue to determine the relative gene expression. Age-related effects in jejunum included higher expression of genes for antimicrobial secretions and barrier function as well as reduced expression of pattern-recognition receptors post- compared to preweaning (P < 0.05). Age-related effects in the colon comprised downregulation of the expression of pattern-recognition receptors post- compared to preweaning (P < 0.05). Likewise, age reduced the colonic expression of genes encoding for cytokines, antimicrobial secretions, antioxidant enzymes, and tight-junction proteins post- compared to preweaning. Effect of POM in the jejunum comprised an increased the expression of toll-like receptors compared to the control (P < 0.05), demonstrating a specific response to microbial antigens. Similarly, POM administration upregulated the jejunal expression of antioxidant enzymes (P < 0.05). The POM perfusion strongly upregulated the colonic expression of cytokines and altered the expression of barrier function genes, fatty acid receptors and transporters, and antimicrobial secretions (P < 0.05). In conclusion, results indicated that POM signaled via altering the expression of pattern-recognition receptors in the jejunum, which in turn activated the secretory defense and decreased mucosal permeability. In the colon, POM may have acted pro-inflammatory via upregulated cytokine expression. Results are valuable for the formulation of transition feeds for the immediate time after weaning to maintain mucosal immune tolerance towards the novel digesta composition.


After weaning, piglets often show symptoms of gut inflammation and reduced performance. The plant-based diet, lack of sow milk, and the resulting novel gut microbiome and metabolite composition in digesta may be causative. However, the acute response of the gut mucosa when exposed to the novel digesta composition has not been fully elucidated. Here, we used the intestinal loop perfusion assay to characterize the immediate effect of a plant-oriented microbiome inoculum (POM) representing postweaning digesta composition on gene expression related to innate immune pathways and barrier function at the jejunal and colonic mucosa in suckling and weaned piglets. Results showed that the recognition of microbial components and barrier function changed in the jejunal and colonic mucosa from pre- to postweaning, indicating age-related maturation and priming by digesta compounds prior to the intestinal loop perfusion assay. In the jejunum, exposure to POM increased expression of receptors recognizing microbial components. In the colon, POM exposure upregulated the expression of genes for pro-inflammatory cytokines and other components of the first line of defense. Results have implications for the formulation of transition feeds for the immediate time after weaning. Inclusion of bioactive porcine milk components may help maintain mucosal immune tolerance towards the novel digesta composition.


Assuntos
Microbiota , Doenças dos Suínos , Suínos , Animais , Feminino , Suplementos Nutricionais , Antioxidantes/metabolismo , Desmame , Citocinas/genética , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Imunidade Inata , Inflamação/metabolismo , Inflamação/veterinária , Doenças dos Suínos/metabolismo
2.
Front Immunol ; 13: 1055048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426366

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viruses for the global swine industry. Infection during late gestation causes reproductive failure but the local immune response in utero remains poorly understood. In this study, an experimental PRRSV-infection model with two different PRRSV-1 field isolates was used to investigate the immune cell phenotypes at the maternal-fetal interface during late gestation. In addition, phenotypic changes induced by a modified live virus (MLV, ReproCyc® PRRS EU) vaccine were studied. Vaccinated (n = 12) and non-vaccinated pregnant gilts (n = 12) were challenged with either one of the PRRSV-1 field isolates (low vs. high virulent, LV or HV) or sham-inoculated at day 84 of gestation. Twenty-one days post infection all gilts were euthanized and the fetal preservation status for all fetuses per litter was assessed. Leukocytes from the maternal-fetal interface were isolated and PRRSV-induced changes were investigated using ex vivo phenotyping by flow cytometry. PRRSV load in tissue from the maternal endometrium (ME) and fetal placenta (FP) was determined by RT-qPCR. In the ME, a vast increase in CD8ß T cells with CD8αposCD27dim early effector phenotype was found for fetuses from the non-vaccinated LV and HV-challenged gilts, compared to non-treated and vaccinated-only controls. HV-challenged fetuses also showed significant increases of lymphocytes with effector phenotypes in the FP, including NKp46pos NK cells, CD8αhigh γδ T cells, as well as CD8αposCD27pos/dim CD4 and CD8 T cells. In vaccinated animals, this common activation of effector phenotypes was more confined and the fetal preservation status significantly improved. Furthermore, a negative correlation between the viral load and CD163highCD169pos mononuclear phagocytic cells was observed in the FP of HV-infected animals. These results suggest that the strong expansion of effector lymphocytes in gilts that were only infected causes immune-pathogenesis rather than protection. In contrast, the attenuated MLV seems to dampen this effect, yet presumably induces memory cells that limit reproductive failure. This work provides valuable insights into changes of local immune cell phenotypes following PRRSV vaccination and infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Feminino , Gravidez , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vacinação , Placenta , Sus scrofa , Leucócitos
3.
One Health ; 15: 100433, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277103

RESUMO

While biosecurity, a central component of the One Health concept, is clearly defined, a harmonized definition of the term ´biosecurity measure´ (BSM) is missing. In turn, particularly at the farm and policy level, this leads to misunderstandings, low acceptance, poor implementation, and thus suboptimal biosecurity along the food animal production chain. Moreover, different views on BSMs affects making comparisons both at the policy level as well as in the scientific community. Therefore, as part of the One Health EJP BIOPIGEE project, a work group i) collected and discussed relevant inclusion and exclusion criteria for measures to be considered in the context of biosecurity and ii) conducted a systematic literature review for potentially existing definitions for the term BSM. This exercise confirmed the lack of a definition of BSM, underlining the importance of the topic. In the pool of articles considered relevant to defining the term BSM, specific research themes were identified. Based on these outcomes, we propose a definition of the term BSM: "A biosecurity measure (BSM) - is the implementation of a segregation, hygiene, or management procedure (excluding medically effective feed additives and preventive/curative treatment of animals) that specifically aims at reducing the probability of the introduction, establishment, survival, or spread of any potential pathogen to, within, or from a farm, operation or geographical area." The definition provides a basis for policymakers to identify factual BSMs, highlights the point of implementation and supports to achieve the necessary quality standards of biosecurity in food animal production. It also enables clear, harmonized, cross-sectoral communication of best biosecurity practices to and from relevant stakeholders and thus contribute to improving biosecurity and thereby strengthen the One Health approach.

4.
Microb Pathog ; 172: 105759, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087692

RESUMO

Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae affects pig health status and the swine industry worldwide. Despite the extensive number of studies focused on A. pleuropneumoniae infection and vaccine development, a thorough analysis of the A. pleuropneumoniae exoproteome is still missing. Using a complementary approach of quantitative proteomics and immunoproteomics we gained an in-depth insight into the A. pleuropneumoniae serotype 2 exoproteome, which provides the basis for future functional studies. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 593 exoproteins, of which 104 were predicted to be virulence factors. The RTX toxins ApxIIA and ApxIIIA -were found to be the most abundant proteins in the A. pleuropneumoniae serotype 2 exoproteome. Furthermore, the ApxIVA toxin was one of the proteins showing the highest abundance, although ApxIVA is commonly assumed to be expressed exclusively in vivo. Our study revealed several antigens, including proteins with moonlight functions, such as the elongation factor (EF)-Tu, and proteins linked to specific metabolic traits, such as the maltodextrin-binding protein MalE, that warrant future functional characterization and might present potential targets for novel therapeutics and vaccines. Our Ig-classes specific serological proteome analysis (SERPA) approach allowed us to explore the development of the host humoral immune response over the course of the infection. These SERPAs pinpointed proteins that might play a key role in virulence and persistence and showed that the immune response to the different Apx toxins is distinct. For instance, our results indicate that the ApxIIIA toxin has properties of a thymus-independent antigen, which should be studied in more detail.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Suínos , Animais , Pleuropneumonia/veterinária , Infecções por Actinobacillus/veterinária , Proteômica , Proteoma/metabolismo , Antígenos T-Independentes/metabolismo , Cromatografia Líquida , Proteínas de Bactérias/metabolismo , Espectrometria de Massas em Tandem , Fatores de Virulência/metabolismo , Fatores de Alongamento de Peptídeos
5.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165740

RESUMO

Weaning often leaves the piglet vulnerable to gut dysfunction. Little is known about the acute response of a gut mucosa primed by a milk-oriented microbiome before weaning to a plant-oriented microbiome (POM) after weaning. We evaluated the epithelial structure, secretory response and permeability in the small and large intestines of piglets receiving a milk-based (i.e., preweaning) or plant-based diet (i.e., postweaning) to POM inocula using intestinal loop perfusion assays (ILPA). The POM were prepared from jejunal and colonic digesta of four 7 week-old weaned (day 28 of life) piglets, having gut-site specific microbial and metabolite composition. Two consecutive ILPA were performed in 16 piglets pre- (days 24 to 27) and 16 piglets postweaning (days 38 to 41) in two replicate batches. Two jejunal and colonic loops per piglet were perfused with Krebs-Henseleit buffer (control) or the respective POM. The outflow fluid was analyzed for antimicrobial secretions. Jejunal and colonic loop tissue were collected after each ILPA for histomorphology and electrophysiology using Ussing chambers. ANOVA was performed using the MIXED procedure in SAS. The POM stimulated the secretory response by increasing mucin in the jejunal and colonic outflow by 99.7% and 54.1%, respectively, and jejunal IgA by 19.2%, whereas colonic lysozyme decreased 25.6% compared to the control (P < 0.05). Fittingly, the POM raised the number of goblet cells by 96.7% in jejunal and 56.9% in colonic loops compared to control loops (P < 0.05). The POM further flattened jejunal villi by 18.3% and reduced crypt depth in jejunal and colonic loops by 53.8% and 9.0% compared to the control (P < 0.05); observations typically made postweaning and indicative for mucosal recognition of 'foreign' compounds. The POM altered the jejunal and colonic net ion flux as indicated by 22.7% and 59.2% greater short-circuit current compared to control loops, respectively; the effect being stronger postweaning (P < 0.05). Colonic barrier function improved with age (P < 0.05), whereas POM perfusion compromised the mucosal barrier as suggested by 17.7% and 54.1% greater GT and mucosal-to-serosal flux of fluorescein-isothiocyanate dextran, respectively, compared to the control (P < 0.05). In conclusion, results demonstrated that the preweaning gut epithelium acutely responds to novel compounds in postweaning digesta by upregulating the first line of defense (i.e., mucin and lysozyme secretion) and impairment of the structural integrity.


Creep feed is offered during the suckling period to prepare the piglet's gut for the dietary transition from a milk- to a plant-based diet at weaning. Nevertheless, the discontinuation of sow milk consumption after weaning can lead to disturbed interactions between the host mucosa and the gut microbiota. Little information is available on the immediate mucosal response towards the altered microbial and metabolite composition in digesta. Therefore, the main objective of this study was to evaluate the immediate effect of the exposure of the jejunal and colonic mucosa to a plant-oriented microbiome (POM), prepared from intestinal digesta of weaned pigs, on the mucosal structure, secretory response, and permeability in piglets before and after weaning using the intestinal loop perfusion assay. The perfusion with POM stimulated the host's secretory response, altered the gut structure and decreased the epithelial integrity before and after weaning. Effects were less strong postweaning, indicating that adaptation processes at the gut epithelium occurred from pre- to postweaning which increased the tolerance towards the POM inoculum.


Assuntos
Microbiota , Muramidase , Animais , Suínos , Desmame , Imunidade Inata , Mucinas , Mucosa Intestinal , Suplementos Nutricionais
6.
Front Vet Sci ; 9: 820233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464363

RESUMO

Reproductive disorders induced by porcine reproductive and respiratory syndrome virus (PRRSV) cause high economic losses in the pig industry worldwide. In this study, we aimed to phenotypically characterize a virulent PRRSV-1 subtype 1 isolate (AUT15-33) in a reproductive model. Furthermore, the protective effect of a heterologous modified live virus vaccine (ReproCyc® PRRS EU) was evaluated. In addition, PRRSV AUT15-33 was genotypically compared to other well-characterized isolates. Sixteen gilts were equally divided into four groups: a vaccinated and infected group (V-I), a vaccinated and non-infected group (V-NI), a non-vaccinated and infected group (NV-I), and a non-vaccinated and non-infected (NV-NI) group. After PRRSV infection on gestation day 84, all gilts were clinically examined on a daily basis, and blood samples were taken at five timepoints. Necropsy was performed 3 weeks after infection. The fetal preservation status was assessed, and PRRSV RNA concentrations were measured in the blood and tissue samples from all gilts and fetuses. After infection, all four gilts in the NV-I group were viremic throughout 17 days post-infection (dpi), whereas two gilts in the V-I group were viremic at only one timepoint at 6 dpi. The viral load was significantly higher in gilt serum, tracheobronchial lymph nodes, uterine lymph nodes, maternal endometrium, and fetal placenta of NV-I gilts compared to the V-I ones (p < 0.05). Moreover, the preservation status of the fetuses derived from NV-I gilts was significantly impaired (55.9% of viable fetuses) compared to the other groups (p < 0.001). Upon comparison with other known isolates, the phylogenetic analyses revealed the closest relation to a well-characterized PRRSV-1 subtype 1 field isolate from Belgium. In conclusion, the high virulence of AUT15-33 was phenotypically confirmed in an experimental reproductive model. The vaccination of the gilts showed promising results in reducing viremia, fetal damage, and transplacental transmission of the PRRSV-1 strain characterized in this study.

7.
Front Immunol ; 11: 582065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013937

RESUMO

The phenotype and function of immune cells that reside at the maternal-fetal interface in humans and mice have been, and still are, extensively studied with the aim to fully comprehend the complex immunology of pregnancy. In pigs, information regarding immune cell phenotypes is limited and mainly focused on early gestation whereas late gestation has not yet been investigated. We designed a unique methodology tailored to the porcine epitheliochorial placenta, which allowed us to address immune phenotypes separately in the maternal endometrium (ME) and fetal placenta (FP) by flow cytometry. In-depth phenotyping of NK cells, non-conventional and conventional T cells within maternal blood (mBld), ME, FP, and fetal spleen (fSpln) revealed major differences between these anatomic sites. In both maternal compartments, all NK cells were perforin+ and had NKp46-defined phenotypes indicative of late-stage differentiation. Likewise, T cells with a highly differentiated phenotype including CD2+CD8α+CD27dim/-perforin+ γδ T cells, CD27-perforin+ cytolytic T cells (CTLs), and T-bet+ CD4+CD8α+CD27- effector memory T (Tem) cells prevailed within these compartments. The presence of highly differentiated T cells was also reflected in the number of cells that had the capacity to produce IFN-γ. In the FP, we found NK cells and T cell populations with a naive phenotype including CD2+CD8α-CD27+perforin- γδ T cells, T-bet-CD4+CD8α-CD27+ T cells, and CD27+perforin- CTLs. However, also non-naive T cell phenotypes including CD2+CD8α+CD27+perforin- γδ T cells, T-bet+CD4+CD8α+CD27- Tem cells, and a substantial proportion of CD27-perforin+ CTLs resided within this anatomic site. Currently, the origin or the cues that steer the differentiation of these putative effector cells are unclear. In the fSpln, NKp46high NK cells and T cells with a naive phenotype prevailed. This study demonstrated that antigen-experienced immune cell phenotypes reside at the maternal-fetal interface, including the FP. Our methodology and our findings open avenues to study NK and T cell function over the course of gestation. In addition, this study lays a foundation to explore the interplay between immune cells and pathogens affecting swine reproduction.


Assuntos
Diferenciação Celular/imunologia , Células Matadoras Naturais/imunologia , Relações Materno-Fetais/fisiologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Feminino , Memória Imunológica/imunologia , Leucócitos Mononucleares , Ativação Linfocitária/imunologia , Perforina/imunologia , Placenta/imunologia , Gravidez , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Suínos
8.
Vet Immunol Immunopathol ; 227: 110092, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32673891

RESUMO

The establishment of a panel of immune markers is of paramount importance to understand the different transcription patterns of infectious diseases in livestock. The array of commercially available immunological assays for cattle and sheep is currently limited, due to the lack of antibodies for these species. Even though SYBR Green based real time quantitative PCR (qPCR) is the most commonly used method to study cytokine transcription in ruminants, a lack of standardization impairs its implementation in the study of different ruminant diseases. In order to obtain reliable qPCR results, several variables need to be considered: choice of reference genes for optimal normalization, variation of annealing temperature among primer sets, and assay specificity and sensitivity. In this study, we developed and validated a panel of immune markers in bovine and ovine samples using SYBR Green based qPCR in a cost-effective way with multiple primer sets optimised to amplify at a common thermal cycling temperature. Twenty primer sets were designed to quantify immune markers (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-15, IL-18, IL-23, TNF-α, IFN-γ, IFN-α, Ki-67, NFkB-65, TLR-3, TLR-4, TLR-8 and Rig-1) in ovine and bovine templates. For optimal normalization and selection of suitable reference genes, primer sets that measure the transcription of five reference genes were also included in the panel. The amplification efficiency, linearity and specificity was validated for all target genes. Optimal amplification conditions were achieved in both ovine and bovine samples for all gene targets, with the exception of Ki67. Relative quantification studies were performed on ovine and bovine mRNA obtained from sheep peripheral blood mononuclear cells (PBMCs) stimulated with three different treatments (PMA/Ionomycin, Concanavalin A (Con A) and pokeweed mitogen (PWM)). Pokeweed and ConA efficiently induced gene transcription of most of the targeted genes, while PMA/Ionomycin showed a weaker induction. Finally, we further assessed usability of our panel by running it on bovine monocyte derived dendritic cells (MoDCs) stimulated with different vaccines. Results confirmed the induction of a specific pro-inflammatory gene transcription pattern by rabies vaccine, which resembles the one occurring during viral infection. Altogether, we validated the efficiency and usability of an extended real-time PCR panel that gives the possibility to rapidly measure a broad spectrum of ovine and bovine immune markers by using a single set of reagents and protocol thus representing a valid and cost-effective tool for research purposes.


Assuntos
Citocinas/genética , Expressão Gênica/imunologia , Leucócitos Mononucleares/imunologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Biomarcadores/análise , Bovinos , Células Cultivadas , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ovinos
9.
Front Immunol ; 11: 603089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584671

RESUMO

The gram-negative facultative intracellular bacteria Salmonella Typhimurium (STM) often leads to subclinical infections in pigs, but can also cause severe enterocolitis in this species. Due to its high zoonotic potential, the pathogen is likewise dangerous for humans. Vaccination with a live attenuated STM strain (Salmoporc) is regarded as an effective method to control STM infections in affected pig herds. However, information on the cellular immune response of swine against STM is still scarce. In this study, we investigated the T-cell immune response in pigs that were vaccinated twice with Salmoporc followed by a challenge infection with a virulent STM strain. Blood- and organ-derived lymphocytes (spleen, tonsils, jejunal and ileocolic lymph nodes, jejunum, ileum) were stimulated in vitro with heat-inactivated STM. Subsequently, CD4+ T cells present in these cell preparations were analyzed for the production of IFN-γ, TNF-α, and IL-17A by flow cytometry and Boolean gating. Highest frequencies of STM-specific cytokine-producing CD4+ T cells were found in lamina propria lymphocytes of jejunum and ileum. Significant differences of the relative abundance of cytokine-producing phenotypes between control group and vaccinated + infected animals were detected in most organs, but dominated in gut and lymph node-residing CD4+ T cells. IL-17A producing CD4+ T cells dominated in gut and gut-draining lymph nodes, whereas IFN-γ/TNF-α co-producing CD4+ T cells were present in all locations. Additionally, the majority of cytokine-producing CD4+ T cells had a CD8α+CD27- phenotype, indicative of a late effector or effector memory stage of differentiation. In summary, we show that Salmonella-specific multifunctional CD4+ T cells exist in vaccinated and infected pigs, dominate in the gut and most likely contribute to protective immunity against STM in the pig.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Imunogenicidade da Vacina , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/patogenicidade , Vacinação , Animais , Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Esquemas de Imunização , Fenótipo , Salmonelose Animal/sangue , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Sus scrofa , Vacinas Vivas não Atenuadas/administração & dosagem
10.
Vet Immunol Immunopathol ; 205: 17-23, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30458998

RESUMO

Actinobacillus pleuropneumoniae (APP) persisting in clinically healthy pigs may be the causative agent of sudden outbreaks of severe respiratory disease in swine herds. During the course of acute disease, the pathogen is eliminated from inflamed lung tissue, which is characterized by the expression of pro-inflammatory cytokines and an influx of neutrophils. However, if clearance by the porcine immune system fails, APP may switch to a persistent form. At later stages of infection, the pathogen may reside in tonsillar tissue without being eliminated by the host immune defence. To better understand the host immune response at different stages of infection, expression pattern of cytokines in tonsils and lung were recorded. In contrast to lung tissue, in which APP presence was associated with a pronounced pro-inflammatory character, APP presence in the tonsils elicited an increased IL-10 expression. In both organs of infected animals, a marked reciprocal correlation of the pro-inflammatory IL-17A and the anti-inflammatory IL-10 was found, supporting the idea that both cytokines are produced in highly associated, but reciprocal differentiated cell types, possibly APP-specific Th17 subsets. It appears that a persistent phenotype of APP triggers the anti-inflammatory immune response in tonsillar tissue in an attempt to evade the porcine immune defence.


Assuntos
Infecções por Actinobacillus/veterinária , Interleucina-10/imunologia , Tonsila Palatina/imunologia , Tonsila Palatina/microbiologia , Doenças dos Suínos/imunologia , Infecções por Actinobacillus/imunologia , Actinobacillus pleuropneumoniae , Animais , Citocinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Interleucina-17/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Células Th17
11.
BMC Vet Res ; 13(1): 64, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245826

RESUMO

BACKGROUND: Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. RESULTS: Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. CONCLUSIONS: In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/imunologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Actinobacillus pleuropneumoniae/metabolismo , Animais , Citocinas/metabolismo , Pleuropneumonia/imunologia , Pleuropneumonia/metabolismo , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Transcriptoma
12.
Vet Res ; 48(1): 4, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166835

RESUMO

Porcine contagious pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) remains one of the major causes of poor growth performance and respiratory disease in pig herds. While the role of antibodies against APP has been intensely studied, the porcine T cell response remains poorly characterized. To address this, pigs were intranasally infected with APP serotype 2 and euthanized during the acute phase [6-10 days post-infection (dpi)] or the chronic phase of APP infection (27-31 dpi). Lymphocytes isolated from blood, tonsils, lung tissue and tracheobronchial lymph nodes were analyzed by intracellular cytokine staining (ICS) for IL-17A, IL-10 and TNF-α production after in vitro stimulation with crude capsular extract (CCE) of the APP inoculation strain. This was combined with cell surface staining for the expression of CD4, CD8α and TCR-γδ. Clinical records, microbiological investigations and pathological findings confirmed the induction of a subclinical APP infection. ICS-assays revealed the presence of APP-CCE specific CD4+CD8αdim IL-17A-producing T cells in blood and lung tissue in most infected animals during the acute and chronic phase of infection and a minor fraction of these cells co-produced TNF-α. APP-CCE specific IL-17A-producing γδ T cells could not be found and APP-CCE specific IL-10-producing CD4+ T cells were present in various organs but only in a few infected animals. The frequency of identified putative Th17 cells (CD4+CD8αdimIL-17A+) in lung and blood correlated positively with lung lesion scores and APP-specific antibody titers during the chronic phase. These results suggest a potential role of Th17 cells in the immune pathogenesis of APP infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pulmão/patologia , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Células Th17/patologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Actinobacillus pleuropneumoniae/imunologia , Animais , Doença Crônica , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/patologia , Masculino , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia
13.
PLoS One ; 9(8): e105643, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140515

RESUMO

Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry.


Assuntos
Camelídeos Americanos/genética , Técnicas de Cultura de Células/métodos , Pele/citologia , Células-Tronco/citologia , Animais , Camelídeos Americanos/imunologia , Linhagem Celular , Proliferação de Células , Imunização , Células-Tronco/imunologia , Células-Tronco/fisiologia , Células-Tronco/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA