Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 122(6): 1516-1522, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28385915

RESUMO

Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MBP: all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MBP so as to minimize VILI will reduce the morbidity and mortality associated with ARDS.


Assuntos
Alvéolos Pulmonares/fisiologia , Ventilação Pulmonar/fisiologia , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Humanos , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
2.
Intensive Care Med Exp ; 4(1): 11, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27207149

RESUMO

Airway pressure release ventilation (APRV) was first described in 1987 and defined as continuous positive airway pressure (CPAP) with a brief release while allowing the patient to spontaneously breathe throughout the respiratory cycle. The current understanding of the optimal strategy to minimize ventilator-induced lung injury is to "open the lung and keep it open". APRV should be ideal for this strategy with the prolonged CPAP duration recruiting the lung and the minimal release duration preventing lung collapse. However, APRV is inconsistently defined with significant variation in the settings used in experimental studies and in clinical practice. The goal of this review was to analyze the published literature and determine APRV efficacy as a lung-protective strategy. We reviewed all original articles in which the authors stated that APRV was used. The primary analysis was to correlate APRV settings with physiologic and clinical outcomes. Results showed that there was tremendous variation in settings that were all defined as APRV, particularly CPAP and release phase duration and the parameters used to guide these settings. Thus, it was impossible to assess efficacy of a single strategy since almost none of the APRV settings were identical. Therefore, we divided all APRV studies divided into two basic categories: (1) fixed-setting APRV (F-APRV) in which the release phase is set and left constant; and (2) personalized-APRV (P-APRV) in which the release phase is set based on changes in lung mechanics using the slope of the expiratory flow curve. Results showed that in no study was there a statistically significant worse outcome with APRV, regardless of the settings (F-ARPV or P-APRV). Multiple studies demonstrated that P-APRV stabilizes alveoli and reduces the incidence of acute respiratory distress syndrome (ARDS) in clinically relevant animal models and in trauma patients. In conclusion, over the 30 years since the mode's inception there have been no strict criteria in defining a mechanical breath as being APRV. P-APRV has shown great promise as a highly lung-protective ventilation strategy.

3.
JAMA Surg ; 151(1): 64-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26444302

RESUMO

IMPORTANCE: Ventilator-induced lung injury may arise from heterogeneous lung microanatomy, whereby some alveoli remain collapsed throughout the breath cycle while their more compliant or surfactant-replete neighbors become overdistended, and this is called dynamic alveolar heterogeneity. OBJECTIVE: To determine how dynamic alveolar heterogeneity is influenced by 2 modes of mechanical ventilation: low tidal-volume ventilation (LTVV) and airway pressure release ventilation (APRV), using in vivo microscopy to directly measure alveolar size distributions. DESIGN, SETTING, AND PARTICIPANTS: In a randomized, nonblinded laboratory animal study conducted between January 2013 and December 2014, 14 rats (450-500 g in size) were randomized to a control group with uninjured lungs (n = 4) and 2 experimental groups with surfactant deactivation induced by polysorbate lavage: the LTVV group (n = 5) and the APRV group (n = 5). For all groups, a thoracotomy and in vivo microscopy were performed. Following lung injury induced by polysorbate lavage, the LTVV group was ventilated with a tidal volume of 6 mL/kg and progressively higher positive end-expiratory pressure (PEEP) (5, 10, 16, 20, and 24 cm H2O). Following lung injury induced by polysorbate lavage, the APRV group was ventilated with a progressively shorter time at low pressure, which increased the ratio of the end-expiratory flow rate (EEFR) to the peak expiratory flow rate (PEFR; from 10% to 25% to 50% to 75%). MAIN OUTCOMES AND MEASURES: Alveolar areas were quantified (using PEEP and EEFR to PEFR ratio) to determine dynamic heterogeneity. RESULTS: Following lung injury induced by polysorbate lavage, a higher PEEP (20-24 cm H2O) with LTVV resulted in alveolar occupancy (reported as percentage of total frame area) at inspiration (39.9%-42.2%) and expiration (35.9%-38.7%) similar to that in the control group (inspiration 53.3%; expiration 50.3%; P > .01). Likewise, APRV with an increased EEFR to PEFR ratio (50%-75%) resulted in alveolar occupancy at inspiration (46.7%-47.9%) and expiration (40.2%-46.6%) similar to that in the control group (P > .01). At inspiration, the distribution of the alveolar area of the control group was similar to that of the APRV group (P > .01) (but not to that of the LTVV group [P < .01]). A lower PEEP (5-10 cm H2O) and a decreased EEFR to PEFR ratio (≤50%) demonstrated dynamic heterogeneity between inspiration and expiration (P < .01 for both) with a greater percentage of large alveoli at expiration. Dynamic alveolar homogeneity between inspiration and expiration occurred with higher PEEP (16-24 cm H2O) (P > .01) and an increased EEFR to PEFR ratio (75%) (P > .01). CONCLUSIONS AND RELEVANCE: Increasing PEEP during LTVV increased alveolar recruitment and dynamic homogeneity but had a significantly different alveolar size distribution compared with the control group. By comparison, reducing the time at low pressure (EEFR to PEFR ratio of 75%) in the APRV group provided dynamic homogeneity and a closer approximation of the dynamics observed in the control group.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/métodos , Respiração com Pressão Positiva/métodos , Alvéolos Pulmonares/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Animais , Fluxo Expiratório Forçado , Microscopia , Modelos Animais , Distribuição Aleatória , Ratos Sprague-Dawley , Toracotomia
4.
Phys Biol ; 10(3): 036008, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23598859

RESUMO

Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the alveolar ducts. These two model solutions correspond to significantly different mechanical properties of the tissue, and we discuss the implications of these different properties and the requirements for new experimental data to discriminate between the hypotheses.


Assuntos
Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/patologia , Animais , Teorema de Bayes , Fenômenos Biomecânicos , Pulmão/metabolismo , Modelos Biológicos , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA