Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397888

RESUMO

The primary cause of atherosclerotic cardiovascular disease (ASCVD) is elevated levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in this process by binding to the LDL receptor (LDL-R) domain, leading to reduced influx of LDL-C and decreased LDL-R cell surface presentation on hepatocytes, resulting higher circulating levels of LDL-C. As a consequence, PCSK9 has been identified as a crucial target for drug development against dyslipidemia and hypercholesterolemia, aiming to lower plasma LDL-C levels. This research endeavors to identify promising inhibitory candidates that target the allosteric site of PCSK9 through an in silico approach. To start with, the FDA-approved Drug Library from Selleckchem was selected and virtually screened by docking studies using Glide extra-precision (XP) docking mode and Smina software (Version 1.1.2). Subsequently, rescoring of 100 drug compounds showing good average docking scores were performed using Gnina software (Version 1.0) to generate CNN Score and CNN binding affinity. Among the drug compounds, amikacin, bestatin, and natamycin were found to exhibit higher docking scores and CNN affinities against the PCSK9 enzyme. Molecular dynamics simulations further confirmed that these drug molecules established the stable protein-ligand complexes when compared to the apo structure of PCSK9 and the complex with the co-crystallized ligand structure. Moreover, the MM-GBSA calculations revealed binding free energy values ranging from -84.22 to -76.39 kcal/mol, which were found comparable to those obtained for the co-crystallized ligand structure. In conclusion, these identified drug molecules have the potential to serve as inhibitors PCSK9 enzyme and these finding could pave the way for the development of new PCSK9 inhibitory drugs in future in vitro research.

2.
Bioorg Chem ; 116: 105384, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601294

RESUMO

The Src homology-2 domain containing-protein tyrosine phosphatase-2 (SHP2) is a convergent node for oncogenic cell-signaling cascades including the PD-L1/PD-1 pathway. As an oncoprotein as well as a potential immunomodulator, SHP2 has now emerged as an attractive target for novel anti-cancer agents. Although significant progress has been made in identifying chemotypes of SHP2 inhibitors, these specific compounds might not be clinically useful to inhibit frequently encountered mutated SHP2 variants. Consequently, it is highly desirable to develop chemically different SHP2 inhibitors sensitive to SHP2 mutants. This work developed a new type of SHP2 inhibitors with 2,5-diaryl-1,3,4-oxadiazole scaffold. The representative compound 6l exhibited SHP2 inhibitory activity with IC50 of 2.73 ± 0.20 µM, showed about 1.56-fold, 5.26-fold, and 7.36-fold selectivity for SHP2 over SHP1, PTP1B and TCPTP respectively. Further investigations confirmed that 6l behaved as mixed-type inhibitor sensitive to leukemia cell TF-1 and inhibited SHP2 mediated cell signaling and proliferation. Molecular dynamics simulation provided more detailed information on the binding modes of compounds and SHP2 protein. These preliminary results could provide a possible opportunity for the development of novel SHP2 inhibitors sensitive to SHP2 mutants with optimal potency and improved pharmacological properties.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxidiazóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Relação Estrutura-Atividade
3.
RSC Adv ; 11(6): 3216-3220, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424294

RESUMO

A series of 2-ethoxycarbonylthieno[2,3-b]quinolines were synthesized in the bio-derived "green" solvent γ-valerolactone (GVL) and evaluated for their inhibitory activities against PTP1B, the representative compound 6a displayed an IC50 value of 8.04 ± 0.71 µM with 4.34-fold preference over TCPTP. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

4.
Acta Pharm Sin B ; 10(11): 2075-2109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33304780

RESUMO

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

5.
Bioorg Med Chem Lett ; 30(11): 127170, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32273218

RESUMO

The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a convergent node for oncogenic cell-signaling cascades including the PD-L1/PD-1 pathway. Consequently, SHP2 has emerged as a compelling target for novel anti-cancer agents. Replacing one of phenyl ring in PTP1B inhibitor 1 with heterocyclic ring led to a series of heterocyclic bis-aryl amide derivatives. The representative compound 7b displayed SHP2 inhibitory activity with IC50 of 2.63 ± 0.08 µM, exhibited about 4-fold selectivity for SHP2 over TCPTP and had no detectable activity against SHP1 and PTP1B. These preliminary results could provide a possible opportunity for the development of novel SHP2 inhibitors with optimal potency and improved pharmacological properties.


Assuntos
Amidas/química , Inibidores Enzimáticos/síntese química , Compostos Heterocíclicos/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Amidas/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Relação Estrutura-Atividade , Domínios de Homologia de src
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117861, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31806479

RESUMO

6-Amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2'-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2'-bipyridine]-3-carboxamide were synthesized through three-component reaction between N1,N3-di(pyridin-2-yl)-malonamide, aldehyde and malononitrile in water using triethylamine as a base at room temperature. Synthesized compounds were characterized by using different techniques (FT-IR, NMR and X-ray diffraction). Additionally, the mentioned compounds were investigated by computational chemistry methods. Obtained results were supported with calculated results. Additionally, NLO properties and molecular docking analyses of related compounds were examined in detail. The binding modes of the compounds 4a and 4b were explored with the colchicine binding site of tubulin, from molecular docking studies, remarkable interactions have been observed for 4a and 4b near to the colchicines binding site of tubulin that may contribute to the inhibition of tubulin polymerization and anticancer activity.


Assuntos
Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Simulação de Acoplamento Molecular , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 221: 117196, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31170603

RESUMO

A novel class of unexpected 1,10-phenanthrolinederivatives were synthesized from 2,3-dihydroacridin-4(1H)-ones with 3-aminonaphthalen-2-carboxylic acid in presence of phosphorus oxychloride at 130°C and simple perceptive emission intensity increasing assay was developed effectively to detect the very low concentrations of Zn2+ and Cd2+ ions. Emission intensity of compounds 3(a-c) directly related to the concentrations of Zn2+ and Cd2+ ions was due to metal chelating enhanced fluorescence (CHEF) effect and also its further validated by fluorescence lifetime measurement. Furthermore, the sensing mechanism for compounds 3(a-c) of Zn2+ and Cd2+ were sustained by theoretical calculations. Computational analysis results reveals that compounds 3(a-c) are more interested in Zn2+ ions than that of Cd2+ ions, while, compound 3c is more interested with Zn2+ and Cd2+ ions than those of the rest of the compounds. In addition, this proposed detection analysis has the direct application for monitoring Zn2+ and Cd2+ concentrations in tap and drinking water samples.


Assuntos
Cádmio/análise , Corantes Fluorescentes/química , Fenantrolinas/química , Zinco/análise , Calibragem , Corantes Fluorescentes/síntese química , Limite de Detecção , Espectroscopia de Ressonância Magnética , Modelos Químicos , Compostos de Fósforo/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA