Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Rep ; 11(1): 13933, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230514

RESUMO

Although humans can direct their attention to visual targets with or without eye movements, it remains unclear how different brain mechanisms control visual attention and eye movements together and/or separately. Here, we measured MEG and fMRI data during covert/overt visual pursuit tasks and estimated cortical currents using our previously developed extra-dipole, hierarchical Bayesian method. Then, we predicted the time series of target positions and velocities from the estimated cortical currents of each task using a sparse machine-learning algorithm. The predicted target positions/velocities had high temporal correlations with actual visual target kinetics. Additionally, we investigated the generalization ability of predictive models among three conditions: control, covert, and overt pursuit tasks. When training and testing data were the same tasks, the largest reconstructed accuracies were overt, followed by covert and control, in that order. When training and testing data were selected from different tasks, accuracies were in reverse order. These results are well explained by the assumption that predictive models consist of combinations of three computational brain functions: visual information-processing, maintenance of attention, and eye-movement control. Our results indicate that separate subsets of neurons in the same cortical regions control visual attention and eye movements differently.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Humanos , Masculino , Especificidade de Órgãos , Análise e Desempenho de Tarefas , Adulto Jovem
2.
Sci Rep ; 10(1): 17844, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082425

RESUMO

Two-photon imaging is a major recording technique used in neuroscience. However, it suffers from several limitations, including a low sampling rate, the nonlinearity of calcium responses, the slow dynamics of calcium dyes and a low SNR, all of which severely limit the potential of two-photon imaging to elucidate neuronal dynamics with high temporal resolution. We developed a hyperacuity algorithm (HA_time) based on an approach that combines a generative model and machine learning to improve spike detection and the precision of spike time inference. Bayesian inference was performed to estimate the calcium spike model, assuming constant spike shape and size. A support vector machine using this information and a jittering method maximizing the likelihood of estimated spike times enhanced spike time estimation precision approximately fourfold (range, 2-7; mean, 3.5-4.0; 2SEM, 0.1-0.25) compared to the sampling interval. Benchmark scores of HA_time for biological data from three different brain regions were among the best of the benchmark algorithms. Simulation of broader data conditions indicated that our algorithm performed better than others with high firing rate conditions. Furthermore, HA_time exhibited comparable performance for conditions with and without ground truths. Thus HA_time is a useful tool for spike reconstruction from two-photon imaging.

3.
Neuroimage ; 203: 116182, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525496

RESUMO

Recently, we proposed a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data (SpatioTemporal Pattern estimation, STeP) (Takeda et al., 2016). From such resting-state data as functional MRI (fMRI), STeP can estimate several spatiotemporal patterns and their onsets even if they are overlapping. Nowadays, a growing number of resting-state data are publicly available from such databases as the Autism Brain Imaging Data Exchange (ABIDE), which promote a better understanding of resting-state brain activities. In this study, we extend STeP to make it applicable to such big databases, thus proposing the method we call BigSTeP. From many subjects' resting-state data, BigSTeP estimates spatiotemporal patterns that are common across subjects (common spatiotemporal patterns) as well as the corresponding spatiotemporal patterns in each subject (subject-specific spatiotemporal patterns). After verifying the performance of BigSTeP by simulation tests, we applied it to over 1,000 subjects' resting-state fMRIs (rsfMRIs) obtained from ABIDE I. This revealed two common spatiotemporal patterns and the corresponding subject-specific spatiotemporal patterns. The common spatiotemporal patterns included spatial patterns resembling the default mode (DMN), sensorimotor, auditory, and visual networks, suggesting that these networks are time-locked with each other. We compared the subject-specific spatiotemporal patterns between autism spectrum disorder (ASD) and typically developed (TD) groups. As a result, significant differences were concentrated at a specific time in a pattern, when the DMN exhibited large positive activity. This suggests that the differences are context-dependent, that is, the differences in fMRI activities between ASDs and TDs do not always occur during the resting state but tend to occur when the DMN exhibits large positive activity. All of these results demonstrate the usefulness of BigSTeP in extracting inspiring hypotheses from big databases in a data-driven way.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Modelos Neurológicos , Processamento de Sinais Assistido por Computador
4.
Front Comput Neurosci ; 13: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881298

RESUMO

In natural conditions the human visual system can estimate the 3D shape of specular objects even from a single image. Although previous studies suggested that the orientation field plays a key role for 3D shape perception from specular reflections, its computational plausibility, and possible mechanisms have not been investigated. In this study, to complement the orientation field information, we first add prior knowledge that objects are illuminated from above and utilize the vertical polarity of the intensity gradient. Then we construct an algorithm that incorporates these two image cues to estimate 3D shapes from a single specular image. We evaluated the algorithm with glossy and mirrored surfaces and found that 3D shapes can be recovered with a high correlation coefficient of around 0.8 with true surface shapes. Moreover, under a specific condition, the algorithm's errors resembled those made by human observers. These findings show that the combination of the orientation field and the vertical polarity of the intensity gradient is computationally sufficient and probably reproduces essential representations used in human shape perception from specular reflections.

5.
PLoS One ; 13(6): e0198806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912968

RESUMO

To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.


Assuntos
Encéfalo/fisiologia , Magnetoencefalografia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Masculino , Modelos Neurológicos , Reconhecimento Automatizado de Padrão/métodos , Estimulação Luminosa
6.
Sci Rep ; 6: 31388, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510407

RESUMO

Visual information about lip and facial movements plays a role in audiovisual (AV) speech perception. Although this has been widely confirmed, previous behavioural studies have shown interlanguage differences, that is, native Japanese speakers do not integrate auditory and visual speech as closely as native English speakers. To elucidate the neural basis of such interlanguage differences, 22 native English speakers and 24 native Japanese speakers were examined in behavioural or functional Magnetic Resonance Imaging (fMRI) experiments while mono-syllabic speech was presented under AV, auditory-only, or visual-only conditions for speech identification. Behavioural results indicated that the English speakers identified visual speech more quickly than the Japanese speakers, and that the temporal facilitation effect of congruent visual speech was significant in the English speakers but not in the Japanese speakers. Using fMRI data, we examined the functional connectivity among brain regions important for auditory-visual interplay. The results indicated that the English speakers had significantly stronger connectivity between the visual motion area MT and the Heschl's gyrus compared with the Japanese speakers, which may subserve lower-level visual influences on speech perception in English speakers in a multisensory environment. These results suggested that linguistic experience strongly affects neural connectivity involved in AV speech integration.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Percepção da Fala/fisiologia , Estimulação Acústica , Feminino , Humanos , Idioma , Masculino , Estimulação Luminosa , Percepção Visual , Adulto Jovem
7.
Neuroimage ; 141: 120-132, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374729

RESUMO

Functional near-infrared spectroscopy (fNIRS) is used to measure cerebral activity because it is simple and portable. However, scalp-hemodynamics often contaminates fNIRS signals, leading to detection of cortical activity in regions that are actually inactive. Methods for removing these artifacts using standard source-detector distance channels (Long-channel) tend to over-estimate the artifacts, while methods using additional short source-detector distance channels (Short-channel) require numerous probes to cover broad cortical areas, which leads to a high cost and prolonged experimental time. Here, we propose a new method that effectively combines the existing techniques, preserving the accuracy of estimating cerebral activity and avoiding the disadvantages inherent when applying the techniques individually. Our new method accomplishes this by estimating a global scalp-hemodynamic component from a small number of Short-channels, and removing its influence from the Long-channels using a general linear model (GLM). To demonstrate the feasibility of this method, we collected fNIRS and functional magnetic resonance imaging (fMRI) measurements during a motor task. First, we measured changes in oxygenated hemoglobin concentration (∆Oxy-Hb) from 18 Short-channels placed over motor-related areas, and confirmed that the majority of scalp-hemodynamics was globally consistent and could be estimated from as few as four Short-channels using principal component analysis. We then measured ∆Oxy-Hb from 4 Short- and 43 Long-channels. The GLM identified cerebral activity comparable to that measured separately by fMRI, even when scalp-hemodynamics exhibited substantial task-related modulation. These results suggest that combining measurements from four Short-channels with a GLM provides robust estimation of cerebral activity at a low cost.


Assuntos
Algoritmos , Artefatos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Oxigênio/sangue , Couro Cabeludo/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Idoso , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Couro Cabeludo/irrigação sanguínea , Sensibilidade e Especificidade , Adulto Jovem
8.
Biomed Opt Express ; 7(7): 2623-40, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27446694

RESUMO

Diffuse optical tomography (DOT) is an advanced imaging method used to visualize the internal state of biological tissues as 3D images. However, current continuous-wave DOT requires high-density probe arrays for measurement (less than 15-mm interval) to gather enough information for 3D image reconstruction, which makes the experiment time-consuming. In this paper, we propose a novel DOT measurement system using multi-directional light sources and multi-directional photodetectors instead of high-density probe arrays. We evaluated this system's multi-directional DOT through computer simulation and a phantom experiment. From the results, we achieved DOT with less than 5-mm localization error up to a 15-mm depth with low-density probe arrays (30-mm interval), indicating that the multi-directional measurement approach allows DOT without requiring high-density measurement.

9.
Front Hum Neurosci ; 10: 187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199710

RESUMO

The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI) to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention) vs. just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%). The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3%) with a significant time savings of 72.3 ms (Original response time of 425.0-352.7 ms for BCI-decoder). The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual induced activity related to piloting the airplane.

10.
Neuroimage ; 135: 287-99, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27150232

RESUMO

Diffuse optical tomography (DOT) is an emerging technology for improving the spatial resolution and spatial specificity of conventional multi-channel near-infrared spectroscopy (NIRS) by the use of high-density measurements and an image reconstruction algorithm. We recently proposed a hierarchical Bayesian DOT algorithm that allows for accurate simultaneous reconstruction of scalp and cortical hemodynamic changes, and verified its performance with a phantom experiment, a computer simulation, and experimental data from one human subject. We extend our previous human case study to a multi-subject, multi-task study, to demonstrate the validity of the algorithm on a wider population and varied task conditions. We measured brain activity during three graded tasks (hand movement, index finger movement, and no-movement), in 12 subjects, using high-density NIRS and functional magnetic resonance imaging (fMRI), acquired in different sessions. The reconstruction performance of our algorithm, and the current gold-standard method for DOT image reconstruction, were evaluated using the blood-oxygenation-level-dependent (BOLD) signals of the fMRI as a reference. In comparison with the BOLD signals, our method achieved a median localization error of 6 and 8mm, and a spatial-pattern similarity of 0.6 and 0.4 for the hand and finger tasks, respectively. It also did not reconstruct any activity in the no-movement task. Compared with the current gold-standard method, the new method showed fewer false positives, which resulted in improved spatial-pattern similarity, although the localization errors of the main activity clusters were comparable.


Assuntos
Teorema de Bayes , Mapeamento Encefálico/métodos , Potencial Evocado Motor/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Córtex Motor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia Óptica/métodos , Adulto , Algoritmos , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
11.
Neuroimage ; 133: 251-265, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26979127

RESUMO

Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Ondas Encefálicas/fisiologia , Potenciais Evocados Visuais/fisiologia , Descanso/fisiologia , Análise Espaço-Temporal , Córtex Visual/fisiologia , Adulto , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-26052280

RESUMO

The inverse problem for estimating model parameters from brain spike data is an ill-posed problem because of a huge mismatch in the system complexity between the model and the brain as well as its non-stationary dynamics, and needs a stochastic approach that finds the most likely solution among many possible solutions. In the present study, we developed a segmental Bayesian method to estimate the two parameters of interest, the gap-junctional (gc ) and inhibitory conductance (gi ) from inferior olive spike data. Feature vectors were estimated for the spike data in a segment-wise fashion to compensate for the non-stationary firing dynamics. Hierarchical Bayesian estimation was conducted to estimate the gc and gi for every spike segment using a forward model constructed in the principal component analysis (PCA) space of the feature vectors, and to merge the segmental estimates into single estimates for every neuron. The segmental Bayesian estimation gave smaller fitting errors than the conventional Bayesian inference, which finds the estimates once across the entire spike data, or the minimum error method, which directly finds the closest match in the PCA space. The segmental Bayesian inference has the potential to overcome the problem of non-stationary dynamics and resolve the ill-posedness of the inverse problem because of the mismatch between the model and the brain under the constraints based, and it is a useful tool to evaluate parameters of interest for neuroscience from experimental spike train data.

13.
IEEE Trans Neural Netw Learn Syst ; 26(5): 1109-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25881370

RESUMO

Diffuse optical tomography (DOT) reconstructs 3-D tomographic images of brain activities from observations by near-infrared spectroscopy (NIRS) that is formulated as an ill-posed inverse problem. This brief presents a method for NIRS DOT based on a hierarchical Bayesian approach introducing the automatic relevance determination prior and the variational Bayes technique. Although the sparseness of the estimation strongly depends on the hyperparameters, in general, our method has less dependency on the hyperparameters. We confirm through numerical experiments that a schematic phase diagram of sparseness with respect to the hyperparameters has two regions: in one region hyperparameters give sparse solutions and in the other they give dense ones. The experimental results are supported by our theoretical analyses in simple cases.


Assuntos
Encéfalo/metabolismo , Hemoglobinas/metabolismo , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Tomografia Óptica , Algoritmos , Teorema de Bayes , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão/métodos , Espectroscopia de Luz Próxima ao Infravermelho
14.
Neuroimage ; 105: 408-27, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25290887

RESUMO

We present an MEG source reconstruction method that simultaneously reconstructs source amplitudes and identifies source interactions across the whole brain. In the proposed method, a full multivariate autoregressive (MAR) model formulates directed interactions (i.e., effective connectivity) between sources. The MAR coefficients (the entries of the MAR matrix) are constrained by the prior knowledge of whole-brain anatomical networks inferred from diffusion MRI. Moreover, to increase the accuracy and robustness of our method, we apply an fMRI prior on the spatial activity patterns and a sparse prior on the MAR coefficients. The observation process of MEG data, the source dynamics, and a series of the priors are combined into a Bayesian framework using a state-space representation. The parameters, such as the source amplitudes and the MAR coefficients, are jointly estimated from a variational Bayesian learning algorithm. By formulating the source dynamics in the context of MEG source reconstruction, and unifying the estimations of source amplitudes and interactions, we can identify the effective connectivity without requiring the selection of regions of interest. Our method is quantitatively and qualitatively evaluated on simulated and experimental data, respectively. Compared with non-dynamic methods, in which the interactions are estimated after source reconstruction with no dynamic constraints, the proposed dynamic method improves most of the performance measures in simulations, and provides better physiological interpretation and inter-subject consistency in real data applications.


Assuntos
Mapeamento Encefálico/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Teorema de Bayes , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética
15.
Neuroimage ; 101: 320-36, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25034620

RESUMO

One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness.


Assuntos
Encéfalo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Magnetoencefalografia/métodos , Modelos Neurológicos , Adulto , Teorema de Bayes , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Masculino
16.
Neurosci Res ; 87: 40-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25011062

RESUMO

Electrocorticogram (ECoG) has provided neural information from the cortical surfaces, is widely used in clinical applications, and expected to be useful for brain-machine interfaces. Recent studies have defined the relationship between neural activity in deep layers of the cerebral cortex and ECoG. However, it is still unclear whether this relationship is shared across different brain states. In this study, spontaneous activity and whisker-evoked responses in the barrel cortex of anesthetized rats were recorded with a 32-channel ECoG electrode array and 32-channel linear silicon probe electrodes, respectively. Spontaneous local field potentials (LFPs) at various depths could be reconstructed with high accuracy (R>0.9) by a linear weighted summation of spontaneous ECoG. Current source density analysis revealed that the reconstructed LFPs correctly represented laminar profiles of current sinks and sources as well as the raw LFP. Moreover, when we applied the spontaneous activity model to reconstruction of LFP from the whisker-related ECoG, high accuracy of reconstruction could be obtained (R>0.9). Our results suggest that the ECoG carried rich information about synaptic currents in the deep layers of the cortex, and the same reconstruction model can be applied to estimate both spontaneous activity and whisker-evoked responses.


Assuntos
Eletroencefalografia/métodos , Potenciais Somatossensoriais Evocados , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Animais , Modelos Lineares , Masculino , Modelos Neurológicos , Estimulação Física , Ratos , Ratos Wistar , Vibrissas/fisiologia
17.
PLoS One ; 9(5): e98014, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879410

RESUMO

Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE) that could extract such brain activities from magnetoencephalography (MEG) or electroencephalography (EEG) measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks), and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance.


Assuntos
Ondas Encefálicas , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Atenção/fisiologia , Percepção Auditiva/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tempo de Reação/fisiologia , Fatores de Tempo
18.
Front Neurosci ; 8: 97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860416

RESUMO

Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface.

19.
Biomed Opt Express ; 4(11): 2411-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24298404

RESUMO

Functional near-infrared spectroscopy (fNIRS) can non-invasively measure hemodynamic responses in the cerebral cortex with a portable apparatus. However, the observation signal in fNIRS measurements is contaminated by the artifact signal from the hemodynamic response in the scalp. In this paper, we propose a method to separate the signals from the cortex and the scalp by estimating both hemodynamic changes by diffuse optical tomography (DOT). In the inverse problem of DOT, we introduce smooth regularization to the hemodynamic change in the scalp and sparse regularization to that in the cortex based on the nature of the hemodynamic responses. These appropriate regularization models, with the spatial information of optical paths of many measurement channels, allow three-dimensional reconstruction of both hemodynamic changes. We validate our proposed method through two-layer phantom experiments and MRI-based head-model simulations. In both experiments, the proposed method simultaneously estimates the superficial smooth activity in the scalp area and the deep localized activity in the cortical area.

20.
Neuroimage ; 72: 55-68, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23357079

RESUMO

In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Comportamento Imitativo/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Observação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA