Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spine (Phila Pa 1976) ; 43(24): 1704-1709, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059489

RESUMO

MINI: Elderly patients older than 65 years were divided into non-specific low back pain (NSLBP) and non-LBP (NLBP) groups. The postural control study of the relative contributions of different proprioceptive signals (relative proprioceptive weighting ratio [RPW]) revealed lower leg proprioceptive decreases (RPW 240 Hz) in NSLBP compared to NLBP. STUDY DESIGN: A cross-sectional, observational study. OBJECTIVE: The aim of this study was to determine a specific proprioceptive control strategy during postural balance in elderly patients with non-specific low back pain (NSLBP) and non-LBP (NLBP). SUMMARY OF BACKGROUND DATA: Proprioceptive decline is an important risk factor for decreased balance control in elderly patients with NSLBP. The resulting reduction in proprioception in the trunk or lower legs may contribute to a reduction in postural sway. This study aims to determine the specific proprioceptive control strategy used during postural balance in elderly patients with NSLBP and NLBP and to assess whether this strategy is related to proprioceptive decline in NSLBP. METHODS: Pressure displacement centers were determined in 28 elderly patients with NSLBP and 46 elderly patients with NLBP during upright stances on a balance board without the benefit of vision. Gastrocnemius and lumbar multifidus muscle vibratory stimulations at 30, 60, and 240 Hz, respectively, were applied to evaluate the relative contributions of the different proprioceptive signals (relative proprioceptive weighting ratio, RPW) used in postural control. RESULTS: Compared to elderly patients with NLBP, those with NSLBP had a lower RPW at 240 Hz and significantly higher RPW at 30 Hz. A logistic regression analysis showed that RPW at 240 Hz was independently associated with NSLBP after controlling for confounding factors. CONCLUSION: Elderly patients with NSLBP decreased their reliance on ankle strategy (RPW at 240 Hz) and hip strategy (RPW at 30 Hz) proprioceptive signals during balance control. The inability to control hip and ankle strategies indicates a deficit of postural control and is hypothesized to result from proprioceptive impairment. Moreover, elderly patients with NSLBP are at higher risk for lower leg proprioceptive decrease (240 Hz) through the NSLBP exacerbation. LEVEL OF EVIDENCE: 4.


A cross-sectional, observational study. The aim of this study was to determine a specific proprioceptive control strategy during postural balance in elderly patients with non-specific low back pain (NSLBP) and non-LBP (NLBP). Proprioceptive decline is an important risk factor for decreased balance control in elderly patients with NSLBP. The resulting reduction in proprioception in the trunk or lower legs may contribute to a reduction in postural sway. This study aims to determine the specific proprioceptive control strategy used during postural balance in elderly patients with NSLBP and NLBP and to assess whether this strategy is related to proprioceptive decline in NSLBP. Pressure displacement centers were determined in 28 elderly patients with NSLBP and 46 elderly patients with NLBP during upright stances on a balance board without the benefit of vision. Gastrocnemius and lumbar multifidus muscle vibratory stimulations at 30, 60, and 240 Hz, respectively, were applied to evaluate the relative contributions of the different proprioceptive signals (relative proprioceptive weighting ratio, RPW) used in postural control. Compared to elderly patients with NLBP, those with NSLBP had a lower RPW at 240 Hz and significantly higher RPW at 30 Hz. A logistic regression analysis showed that RPW at 240 Hz was independently associated with NSLBP after controlling for confounding factors. Elderly patients with NSLBP decreased their reliance on ankle strategy (RPW at 240 Hz) and hip strategy (RPW at 30 Hz) proprioceptive signals during balance control. The inability to control hip and ankle strategies indicates a deficit of postural control and is hypothesized to result from proprioceptive impairment. Moreover, elderly patients with NSLBP are at higher risk for lower leg proprioceptive decrease (240 Hz) through the NSLBP exacerbation. Level of Evidence: 4.


Assuntos
Dor Lombar/fisiopatologia , Músculos Paraespinais/fisiopatologia , Equilíbrio Postural/fisiologia , Posição Ortostática , Idoso , Tornozelo , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Vibração
2.
J Phys Ther Sci ; 29(10): 1788-1792, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29184289

RESUMO

[Purpose] This study aims to determine the specific proprioceptive control strategy used during postural balance in older patients with low back pain (LBP) and non-LBP (NLBP) and to assess whether this strategy is related to proprioceptive decline and LBP. [Subjects and Methods] Pressure displacement center was determined in 47 older persons with LBP and 64 older persons with NLBP during upright stance on a balance board without vision. Gastrocnemius (GS) and lumbar multifidus muscle (LM) vibratory stimulations of 60 and 240-Hz, respectively, were applied to evaluate the relative contributions of different proprioceptive signals (relative proprioceptive weighting ratio, RPW) used in postural control. Age, height, weight, back muscle strength, L1/2 and L4/5 lumbar multifidus cross section area ratio, skeletal muscle mass index, sagittal vertical axis, and Roland-Morris disability questionnaire (RDQ) were evaluated. [Results] Compared with older patients with NLBP, those with LBP showed a lower RPW 240-Hz, lower L4/5 lumbar multifidus cross-sectional area ratio, and a significantly higher age and RDQ. Logistic regression analysis showed that RPW 240-Hz and age were independently associated with LBP, after controlling for confounding factors. [Conclusion] Older patients with LBP decreased their reliance on GS (RPW 240-Hz) proprioceptive signals during balance control.

3.
J Phys Ther Sci ; 27(7): 2247-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26311962

RESUMO

[Purpose] The purpose of this study was to examine the relationship between the paraspinal muscle cross-sectional area and the relative proprioceptive weighting ratio during local vibratory stimulation of older persons with lumbar spondylosis in an upright position. [Subjects] In all, 74 older persons hospitalized for lumbar spondylosis were included. [Methods] We measured the relative proprioceptive weighting ratio of postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' paraspinal or gastrocnemius muscles. Back strength, abdominal muscle strength, and erector spinae muscle (L1/L2, L4/L5) and lumbar multifidus (L1/L2, L4/L5) cross-sectional areas were evaluated. [Results] The erector spinae muscle (L1/L2) cross-sectional area was associated with the relative proprioceptive weighting ratio during 60Hz stimulation. [Conclusion] These findings show that the relative proprioceptive weighting ratio compared to the erector spinae muscle (L1/L2) cross-sectional area under 60Hz proprioceptive stimulation might be a good indicator of trunk proprioceptive sensitivity.

4.
J Phys Ther Sci ; 26(10): 1627-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25364130

RESUMO

[Purpose] The purpose of this study was to examine the relationship between physical function and postural sway during local vibratory stimulation of middle-aged subjects in an upright position. [Subjects] The subjects were 25 healthy community-dwelling middle-aged people. [Methods] We measured postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' lumbar multifidus or gastrocnemius muscles. Physical function was evaluated by 5-m usual gait speed and grip strength. [Results] Gait speed was strongly correlated to the anteroposterior body sway in the upright position during 30 Hz gastrocnemius muscles vibration (GMV). [Conclusion] Postural sway during 30 Hz GMV was strongly associated with gait speed and showed a posterior displacement. These findings show that the lower leg's response to balance control under 30 Hz proprioceptive stimulation might be a good indicator of declining gait function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA