Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 77(5): 288-298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438499

RESUMO

The biosynthetic gene clusters (BGCs) for the macrocyclic lactone-based polyketide compounds are extremely large-sized because the polyketide synthases that generate the polyketide chains of the basic backbone are of very high molecular weight. In developing a heterologous expression system for the large BGCs amenable to the production of such natural products, we selected concanamycin as an appropriate target. We obtained a bacterial artificial chromosome (BAC) clone with a 211-kb insert harboring the entire BGC responsible for the biosynthesis of concanamycin. Heterologous expression of this clone in a host strain, Streptomyces avermitilis SUKA32, permitted the production of concanamycin, as well as that of two additional aromatic polyketides. Structural elucidation identified these additional products as ent-gephyromycin and a novel compound that was designated JBIR-157. We describe herein sequencing and expression studies performed on these BGCs, demonstrating the utility of large BAC clones for the heterologous expression of cryptic or near-silent loci.


Assuntos
Cromossomos Artificiais Bacterianos , Família Multigênica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Produtos Biológicos/metabolismo
3.
Sci Rep ; 13(1): 3349, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849815

RESUMO

The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 µm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.


Assuntos
Distrofias de Cones e Bastonetes , Tecido Nervoso , Animais , Nervo Radial , Proteômica , Estrelas-do-Mar , Equinodermos
4.
Biochem Biophys Rep ; 32: 101349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36147050

RESUMO

Ascidians accumulate extremely high levels of vanadium (V) in their blood cells. Several V-related proteins, including V-binding proteins (vanabins), have been isolated from V-accumulating ascidians. In this study, to obtain a deeper understanding of vanabins, we performed de novo transcriptome analysis of blood cells from a V-rich ascidian, Ascidia sydneiensis samea, and constructed a database containing 8532 predicted proteins. We found a novel vanabin with a unique acidic amino acid-rich C-terminal domain, designated VanabinX, in the database and studied it in detail. Reverse-transcription polymerase chain reaction analysis revealed that VanabinX was detected in all adult tissues examined, and was most prominent in blood cells and muscle tissue. We prepared recombinant proteins and performed immobilized metal ion affinity chromatography and a NADPH-coupled V(V)-reductase assay. VanabinX bound to metal ions, with increasing affinity for Cu(II) > Zn(II) > Co(II), but not to V(IV). VanabinX reduced V(V) to V(IV) at a rate of 0.170 µM per micoromolar protein within 30 min. The C-terminal acidic domain enhanced the reduction of V(V) by Vanabin2 to 1.3-fold and of VanabinX itself to 1.7-fold in trans mode. In summary, we constructed a protein database containing 8532 predicted proteins expressed in blood cells; among them, we discovered a novel vanabin, VanabinX, which enhances V reduction by vanabins.

5.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33902812

RESUMO

Some sea slugs sequester chloroplasts from algal food in their intestinal cells and photosynthesize for months. This phenomenon, kleptoplasty, poses a question of how the chloroplast retains its activity without the algal nucleus. There have been debates on the horizontal transfer of algal genes to the animal nucleus. To settle the arguments, this study reported the genome of a kleptoplastic sea slug, Plakobranchus ocellatus, and found no evidence of photosynthetic genes encoded on the nucleus. Nevertheless, it was confirmed that light illumination prolongs the life of mollusk under starvation. These data presented a paradigm that a complex adaptive trait, as typified by photosynthesis, can be transferred between eukaryotic kingdoms by a unique organelle transmission without nuclear gene transfer. Our phylogenomic analysis showed that genes for proteolysis and immunity undergo gene expansion and are up-regulated in chloroplast-enriched tissue, suggesting that these molluskan genes are involved in the phenotype acquisition without horizontal gene transfer.


Assuntos
Clorófitas/fisiologia , Cloroplastos/fisiologia , Gastrópodes/genética , Transferência Genética Horizontal , Simbiose/genética , Animais , Núcleo Celular/genética , Núcleo Celular/fisiologia , Clorófitas/genética , Filogenia
6.
Nat Ecol Evol ; 4(6): 820-830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32313176

RESUMO

Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid-late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record.


Assuntos
Evolução Molecular , Duplicação Gênica , Animais , Genoma , Sintenia , Vertebrados/genética
7.
Sci Rep ; 10(1): 4961, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188910

RESUMO

Single-cell RNA-seq has been established as a reliable and accessible technique enabling new types of analyses, such as identifying cell types and studying spatial and temporal gene expression variation and change at single-cell resolution. Recently, single-cell RNA-seq has been applied to developing embryos, which offers great potential for finding and characterising genes controlling the course of development along with their expression patterns. In this study, we applied single-cell RNA-seq to the 16-cell stage of the Ciona embryo, a marine chordate and performed a computational search for cell-specific gene expression patterns. We recovered many known expression patterns from our single-cell RNA-seq data and despite extensive previous screens, we succeeded in finding new cell-specific patterns, which we validated by in situ and single-cell qPCR.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Linhagem da Célula , Embrião não Mamífero/citologia , Sequenciamento do Exoma
8.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848439

RESUMO

Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.


Assuntos
Evolução Biológica , Chlorella/metabolismo , Hydra/metabolismo , Simbiose , Animais , Chlorella/efeitos dos fármacos , Chlorella/genética , Sequência Conservada , Escuridão , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Genoma , Hydra/efeitos dos fármacos , Hydra/genética , Hydra/crescimento & desenvolvimento , Anotação de Sequência Molecular , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Especificidade da Espécie , Açúcares/farmacologia , Simbiose/efeitos dos fármacos , Simbiose/genética
9.
ISME J ; 12(3): 776-790, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29321691

RESUMO

Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, a parasitic relationship, or a chance association? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera, and the impact on the host transcriptome was assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery is modified. These responses differ markedly from those described for infection with a competent strain of the coral mutualist Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera could be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist.


Assuntos
Alveolados/fisiologia , Antozoários/parasitologia , Simbiose , Alveolados/genética , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Evolução Biológica , Recifes de Corais , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/parasitologia , Fotossíntese , Transcriptoma
10.
Curr Biol ; 27(7): 958-967, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28318975

RESUMO

Resolving the early diversification of animal lineages has proven difficult, even using genome-scale datasets. Several phylogenomic studies have supported the classical scenario in which sponges (Porifera) are the sister group to all other animals ("Porifera-sister" hypothesis), consistent with a single origin of the gut, nerve cells, and muscle cells in the stem lineage of eumetazoans (bilaterians + ctenophores + cnidarians). In contrast, several other studies have recovered an alternative topology in which ctenophores are the sister group to all other animals (including sponges). The "Ctenophora-sister" hypothesis implies that eumetazoan-specific traits, such as neurons and muscle cells, either evolved once along the metazoan stem lineage and were then lost in sponges and placozoans or evolved at least twice independently in Ctenophora and in Cnidaria + Bilateria. Here, we report on our reconstruction of deep metazoan relationships using a 1,719-gene dataset with dense taxonomic sampling of non-bilaterian animals that was assembled using a semi-automated procedure, designed to reduce known error sources. Our dataset outperforms previous metazoan gene superalignments in terms of data quality and quantity. Analyses with a best-fitting site-heterogeneous evolutionary model provide strong statistical support for placing sponges as the sister-group to all other metazoans, with ctenophores emerging as the second-earliest branching animal lineage. Only those methodological settings that exacerbated long-branch attraction artifacts yielded Ctenophora-sister. These results show that methodological issues must be carefully addressed to tackle difficult phylogenetic questions and pave the road to a better understanding of how fundamental features of animal body plans have emerged.


Assuntos
Evolução Biológica , Genoma , Invertebrados/classificação , Filogenia , Poríferos/genética , Vertebrados/classificação , Animais , Genômica/métodos , Invertebrados/genética , Poríferos/classificação , Vertebrados/genética
11.
Nat Microbiol ; 1: 15011, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27571756

RESUMO

Diverse organisms are associated with obligate microbial mutualists. How such essential symbionts have originated from free-living ancestors is of evolutionary interest. Here we report that, in natural populations of the stinkbug Plautia stali, obligate bacterial mutualists are evolving from environmental bacteria. Of six distinct bacterial lineages associated with insect populations, two are uncultivable with reduced genomes, four are cultivable with non-reduced genomes, one uncultivable symbiont is fixed in temperate populations, and the other uncultivable symbiont coexists with four cultivable symbionts in subtropical populations. Symbiont elimination resulted in host mortality for all symbionts, while re-infection with any of the symbionts restored normal host growth, indicating that all the symbionts are indispensable and almost equivalent functionally. Some aseptic newborns incubated with environmental soils acquired the cultivable symbionts and normal growth was restored, identifying them as environmental Pantoea spp. Our finding uncovers an evolutionary transition from a free-living lifestyle to obligate mutualism that is currently ongoing in nature.


Assuntos
Bactérias/classificação , Bactérias/genética , Evolução Molecular , Heterópteros/microbiologia , Simbiose , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Microbiologia Ambiental , Genoma Bacteriano , Heterópteros/fisiologia , Análise de Sequência de DNA , Análise de Sobrevida
12.
PLoS One ; 11(2): e0148988, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26882089

RESUMO

The aim of this study was first to identify lysozymes paralogs in the deep sea mussel Bathymodiolus azoricus then to measure their relative expression or activity in different tissue or conditions. B. azoricus is a bivalve that lives close to hydrothermal chimney in the Mid-Atlantic Ridge (MAR). They harbour in specialized gill cells two types of endosymbiont (gram-bacteria): sulphide oxidizing bacteria (SOX) and methanotrophic bacteria (MOX). This association is thought to be ruled by specific mechanism or actors of regulation to deal with the presence of symbiont but these mechanisms are still poorly understood. Here, we focused on the implication of lysozyme, a bactericidal enzyme, in this endosymbiosis. The relative expression of Ba-lysozymes paralogs and the global anti-microbial activity, were measured in natural population (Lucky Strike--1700 m, Mid-Atlantic Ridge), and in in situ experimental conditions. B. azoricus individuals were moved away from the hydrothermal fluid to induce a loss of symbiont. Then after 6 days some mussels were brought back to the mussel bed to induce a re-acquisition of symbiotic bacteria. Results show the presence of 6 paralogs in B. azoricus. In absence of symbionts, 3 paralogs are up-regulated while others are not differentially expressed. Moreover the global activity of lysozyme is increasing with the loss of symbiont. All together these results suggest that lysozyme may play a crucial role in symbiont regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Bivalves/fisiologia , Chlorobi/fisiologia , Bactérias Gram-Negativas/fisiologia , Methylococcaceae/fisiologia , Muramidase/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Bivalves/microbiologia , Chlorobi/classificação , Chlorobi/enzimologia , Chlorobi/genética , Ecossistema , Regulação Bacteriana da Expressão Gênica , Brânquias/microbiologia , Brânquias/fisiologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Fontes Hidrotermais , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Methylococcaceae/classificação , Methylococcaceae/enzimologia , Methylococcaceae/genética , Dados de Sequência Molecular , Muramidase/biossíntese , Muramidase/genética , Filogenia , Alinhamento de Sequência , Simbiose/genética
13.
Proc Natl Acad Sci U S A ; 112(51): E7093-100, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644562

RESUMO

Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the "germ-line multipotency program" and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells.


Assuntos
Células-Tronco/metabolismo , Animais , Evolução Molecular , Instabilidade Genômica , Hydra/citologia , Hydra/genética , Mamíferos , Filogenia , Poríferos/citologia , Poríferos/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Transcriptoma
14.
Elife ; 4: e07966, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371554

RESUMO

Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/genética , Toxinas Bacterianas/genética , Bivalves/microbiologia , Fontes Hidrotermais , Animais , Bactérias/crescimento & desenvolvimento , Toxinas Bacterianas/biossíntese , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Dados de Sequência Molecular , Proteoma/análise , Água do Mar , Análise de Sequência de DNA , Simbiose
15.
Genome Biol Evol ; 7(8): 2237-44, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26199191

RESUMO

Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.


Assuntos
Dinoflagellida/genética , Genoma Mitocondrial , Plasmodium falciparum/genética , Sequência de Bases , Mapeamento Cromossômico , Sequência Conservada , Ordem dos Genes , Tamanho do Genoma , Dados de Sequência Molecular , RNA não Traduzido/genética , Transcriptoma
16.
Dev Biol ; 403(1): 43-56, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888074

RESUMO

Hox cluster genes play crucial roles in development of the metazoan antero-posterior axis. Functions of Hox genes in patterning the central nervous system and limb buds are well known. They are also expressed in chordate endodermal tissues, where their roles in endodermal development are still poorly understood. In the invertebrate chordate, Ciona intestinalis, endodermal tissues are in a premature state during the larval stage, and they differentiate into the digestive tract during metamorphosis. In this study, we showed that disruption of a Hox gene, Ci-Hox10, prevented intestinal formation. Ci-Hox10-knock-down larvae displayed defective migration of endodermal strand cells. Formation of a protrusion, which is important for cell migration, was disrupted in these cells. The collagen type IX gene is a downstream target of Ci-Hox10, and is negatively regulated by Ci-Hox10 and a matrix metalloproteinase ortholog, prior to endodermal cell migration. Inhibition of this regulation prevented cellular migration. These results suggest that Ci-Hox10 regulates endodermal strand cell migration by forming a protrusion and by reconstructing the extracellular matrix.


Assuntos
Movimento Celular/fisiologia , Ciona intestinalis/embriologia , Endoderma/citologia , Proteínas de Homeodomínio/genética , Intestinos/embriologia , Animais , Padronização Corporal/genética , Diferenciação Celular , Ciona intestinalis/metabolismo , Colágeno Tipo IX/biossíntese , Colágeno Tipo IX/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Intestinos/citologia
17.
PLoS One ; 10(3): e0119406, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741697

RESUMO

The light-harvesting complex (LHC) is an essential component in light energy capture and transduction to facilitate downstream photosynthetic reactions in plant and algal chloroplasts. The unicellular dinoflagellate alga Symbiodinium is an endosymbiont of cnidarian animals, including corals and sea anemones, and provides carbohydrates generated through photosynthesis to host animals. Although Symbiodinium possesses a unique LHC gene family, called chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC), its genome-level diversity and evolutionary trajectories have not been investigated. Here, we describe a phylogenetic analysis revealing that many of the LHCs are encoded by highly duplicated genes with multi-subunit polyprotein structures in the nuclear genome of Symbiodinium minutum. This analysis provides an extended list of the LHC gene family in a single organism, including 80 loci encoding polyproteins composed of 145 LHC subunits recovered in the phylogenetic tree. In S. minutum, 5 phylogenetic groups of the Lhcf-type gene family, which is exclusively conserved in algae harboring secondary plastids of red algal origin, were identified. Moreover, 5 groups of the Lhcr-type gene family, of which members are known to be associated with PSI in red algal plastids and secondary plastids of red algal origin, were identified. Notably, members classified within a phylogenetic group of the Lhcf-type (group F1) are highly duplicated, which may explain the presence of an unusually large number of LHC genes in this species. Some gene units were homologous to other units within single loci of the polyprotein genes, whereas intergenic homologies between separate loci were conspicuous in other cases, implying that gene unit 'shuffling' by gene conversion and/or genome rearrangement might have been a driving force for diversification. These results suggest that vigorous intra- and intergenic gene duplication events have resulted in the genomic framework of photosynthesis in coral symbiont dinoflagellate algae.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Duplicação Gênica , Complexos de Proteínas Captadores de Luz/fisiologia , Simbiose , Animais , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia
18.
Mol Biol Evol ; 32(1): 81-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25234703

RESUMO

Because self-incompatibility loci are maintained heterozygous and recombination within self-incompatibility loci would be disadvantageous, self-incompatibility loci are thought to contribute to structural and functional differentiation of chromosomes. Although the hermaphrodite chordate, Ciona intestinalis, has two self-incompatibility genes, this incompatibility system is incomplete and self-fertilization occurs under laboratory conditions. Here, we established an inbred strain of C. intestinalis by repeated self-fertilization. Decoding genome sequences of sibling animals of this strain identified a 2.4-Mbheterozygous region on chromosome 7. A self-incompatibility gene, Themis-B, was encoded within this region. This observation implied that this self-incompatibility locus and the linkage disequilibrium of its flanking region contribute to the formation of the 2.4-Mb heterozygous region, probably through recombination suppression. We showed that different individuals in natural populations had different numbers and different combinations of Themis-B variants, and that the rate of self-fertilization varied among these animals. Our result explains why self-fertilization occurs under laboratory conditions. It also supports the concept that the Themis-B locus is preferentially retained heterozygous in the inbred line and contributes to the formation of the 2.4-Mb heterozygous region. High structural variations might suppress recombination, and this long heterozygous region might represent a preliminary stage of structural differentiation of chromosomes.


Assuntos
Animais Endogâmicos/genética , Ciona intestinalis/genética , Heterozigoto , Animais , Animais Endogâmicos/fisiologia , Cromossomos , Ciona intestinalis/fisiologia , Loci Gênicos , Variação Genética , Autofertilização , Análise de Sequência de DNA
19.
Genesis ; 52(12): 952-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394327

RESUMO

The organization of echinoderm Hox clusters is of interest due to the role that Hox genes play in deuterostome development and body plan organization, and the unique gene order of the Hox complex in the sea urchin Strongylocentrotus purpuratus, which has been linked to the unique development of the axial region. Here, it has been reported that the Hox and ParaHox clusters of Acanthaster planci, a corallivorous starfish found in the Pacific and Indian oceans, generally resembles the chordate and hemichordate clusters. The A. planci Hox cluster shared with sea urchins the loss of one of the medial Hox genes, even-skipped (Evx) at the anterior of the cluster, as well as organization of the posterior Hox genes.


Assuntos
Genes Homeobox , Ouriços-do-Mar/genética , Estrelas-do-Mar/genética , Animais , Evolução Molecular , Deleção de Genes , Família Multigênica , Filogenia , Ouriços-do-Mar/classificação , Estrelas-do-Mar/classificação
20.
Int J Mol Sci ; 15(8): 14364-71, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25196437

RESUMO

Barnacles of the genus Neoverruca are abundant near deep-sea hydrothermal vents of the northwestern Pacific Ocean, and are useful for understanding processes of population formation and maintenance of deep-sea vent faunas. Using next-generation sequencing, we isolated 12 polymorphic microsatellite loci from Neoverruca sp., collected in the Okinawa Trough. These microsatellite loci revealed 2-19 alleles per locus. The expected and observed heterozygosities ranged from 0.286 to 1.000 and 0.349 to 0.935, respectively. Cross-species amplification showed that 9 of the 12 loci were successfully amplified for Neoverruca brachylepadoformis in the Mariana Trough. A pairwise FST value calculated using nine loci showed significant genetic differentiation between the two species. Consequently, the microsatellite markers we developed will be useful for further population genetic studies to elucidate genetic diversity, differentiation, classification, and evolutionary processes in the genus Neoverruca.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fontes Hidrotermais , Repetições de Microssatélites/genética , Thoracica/genética , Animais , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA