Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0295053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033133

RESUMO

The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Células Endoteliais/metabolismo , Técnicas de Cocultura , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Endotélio Vascular/metabolismo , Adesão Celular
2.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884813

RESUMO

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Malária/parasitologia , Regulação da Expressão Gênica , Plasmodium falciparum/genética
3.
BMC Bioinformatics ; 24(1): 341, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704952

RESUMO

BACKGROUND: Mitochondria are the cell organelles that produce most of the chemical energy required to power the cell's biochemical reactions. Despite being a part of a eukaryotic host cell, the mitochondria contain a separate genome whose origin is linked with the endosymbiosis of a prokaryotic cell by the host cell and encode independent genomic information throughout their genomes. Mitochondrial genomes accommodate essential genes and are regularly utilized in biotechnology and phylogenetics. Various assemblers capable of generating complete mitochondrial genomes are being continuously developed. These tools often use whole-genome sequencing data as an input containing reads from the mitochondrial genome. Till now, no published work has explored the systematic comparison of all the available tools for assembling human mitochondrial genomes using short-read sequencing data. This evaluation is required to identify the best tool that can be well-optimized for small-scale projects or even national-level research. RESULTS: In this study, we have tested the mitochondrial genome assemblers for both simulated datasets and whole genome sequencing (WGS) datasets of humans. For the highest computational setting of 16 computational threads with the simulated dataset having 1000X read depth, MitoFlex took the least execution time of 69 s, and IOGA took the longest execution time of 1278 s. NOVOPlasty utilized the least computational memory of approximately 0.098 GB for the same setting, whereas IOGA utilized the highest computational memory of 11.858 GB. In the case of WGS datasets for humans, GetOrganelle and MitoFlex performed the best in capturing the SNPs information with a mean F1-score of 0.919 at the sequencing depth of 10X. MToolBox and NOVOPlasty performed consistently across all sequencing depths with a mean F1 score of 0.897 and 0.890, respectively. CONCLUSIONS: Based on the overall performance metrics and consistency in assembly quality for all sequencing data, MToolBox performed the best. However, NOVOPlasty was the second fastest tool in execution time despite being single-threaded, and it utilized the least computational resources among all the assemblers when tested on simulated datasets. Therefore, NOVOPlasty may be more practical when there is a significant sample size and a lack of computational resources. Besides, as long-read sequencing gains popularity, mitochondrial genome assemblers must be developed to use long-read sequencing data.


Assuntos
Genoma Mitocondrial , Humanos , Genoma Humano , Mitocôndrias/genética , Benchmarking , Biotecnologia
4.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293082

RESUMO

Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.

5.
Mol Genet Genomics ; 298(5): 979-993, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37225902

RESUMO

Tenacibaculosis is an ulcerative skin disorder that affects finfish. It is caused by members of the genus Tenacibaculum, resulting in eccentric behavioural changes, including anorexia, lethargy, and abnormal swimming patterns that often result in mortality. Currently, species suspected of causing fish mortality include T. ovolyticum, T. gallaicum, T. discolor, T. finnmarkense, T. mesophilum, T. soleae, T. dicentrarchi, and T. maritimum. However, pathogenic members and the mechanisms involved in disease causation, progression, and transmission are limited due to the inadequate sequencing efforts in the past decade. In this study, we use a comparative genomics approach to investigate the characteristic features of 26 publicly available genomes of Tenacibaculum and report our observations. We propose the reclassification of "T. litoreum HSC 22" to the singaporense species and assignment of "T. sp. 4G03" to the species discolor (species with quotation marks have not been appropriately named). We also report the co-occurrence of several antimicrobial resistance/virulence genes and genes private to a few members. Finally, we mine several non-B DNA forming regions, operons, tandem repeats, high-confidence putative effector proteins, and sortase that might play a pivotal role in bacterial evolution, transcription, and pathogenesis.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Tenacibaculum , Animais , Tenacibaculum/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/genética , Infecções por Flavobacteriaceae/microbiologia , Genômica , Peixes
6.
Database (Oxford) ; 20212021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585731

RESUMO

The severe acute respiratory syndrome coronavirus 2 that causes coronavirus disease 2019 (COVID-19) disrupted the normal functioning throughout the world since early 2020 and it continues to do so. Nonetheless, the global pandemic was taken up as a challenge by researchers across the globe to discover an effective cure, either in the form of a drug or vaccine. This resulted in an unprecedented surge of experimental and computational data and publications, which often translated their findings in the form of databases (DBs) and tools. Over 160 such DBs and more than 80 software tools were developed, which are uncharacterized, unannotated, deployed at different universal resource locators and are challenging to reach out through a normal web search. Besides, most of the DBs/tools are present on preprints and are either underutilized or unrecognized because of their inability to make it to top Google search hits. Henceforth, there was a need to crawl and characterize these DBs and create a compendium for easy referencing. The current article is one such concerted effort in this direction to create a COVID-19 resource compendium (COVIDium) that would facilitate the researchers to find suitable DBs and tools for their research studies. COVIDium tries to classify the DBs and tools into 11 broad categories for quick navigation. It also provides end-users some generic hit terms to filter the DB entries for quick access to the resources. Additionally, the DB provides Tracker Dashboard, Neuro Resources, references to COVID-19 datasets and protein-protein interactions. This compendium will be periodically updated to accommodate new resources. Database URL: The COVIDium is accessible through http://kraza.in/covidium/.


Assuntos
COVID-19 , Bases de Dados Factuais , Software , Humanos , SARS-CoV-2
7.
Curr Pharm Des ; 27(13): 1628-1641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33023438

RESUMO

INTRODUCTION: The rapid emergence of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-- CoV-2) has resulted in an increased mortality rate across the globe. However, the underlying mechanism of SARS-CoV-2 altering human immune response is still elusive. The existing literature on miRNA mediated pathogenesis of RNA virus viz. Dengue virus, West Nile virus, etc. raises a suspicion that miRNA encoded by SARS-CoV-2 might facilitate virus replication and regulate the host's gene expression at the post-transcriptional level. METHODS: We investigated this possibility via computational prediction of putative miRNAs encoded by the SARS-CoV-2 genome using a novel systematic pipeline that predicts putative mature-miRNA and their targeted genes transcripts. To trace down if viral-miRNAs targeted the genes critical to the immune pathway, we assessed whether mature miRNA transcripts exhibit effective hybridization with the 3'UTR region of human gene transcripts. Conversely, we also tried to study human miRNA-mediated viral gene regulation to get insight into the miRNA mediated offense and defense mechanism of virus and its host organisms in toto. RESULTS: Our analysis led us to shortlist six putative miRNAs that target, majorly, genes related to cell proliferation/ differentiation/signaling, and senescence. Nonetheless, they also target immune-related genes that directly/ indirectly orchestrate immune pathways like TNF (Tumor Necrosis Factor) signaling and Chemokine signaling pathways putatively serving as the nucleus to cytokine storms. CONCLUSION: Besides, these six miRNAs were found to be conserved so far across 80 complete genomes of SARS-CoV-2 (NCBI Virus, last assessed 12 April 2020) including Indian strains that are also targeted by 7 human miRNAs and can, therefore, be exploited to develop MicroRNA-Attenuated Vaccines.


Assuntos
COVID-19 , MicroRNAs , Síndrome da Liberação de Citocina , Humanos , MicroRNAs/genética , SARS-CoV-2 , Replicação Viral
8.
J Exp Bot ; 72(6): 2212-2230, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33197257

RESUMO

Rice, a staple food worldwide, contains varying amounts of nutrients in different grain tissues. The underlying molecular mechanism of such distinct nutrient partitioning remains poorly investigated. Here, an optimized rapid laser capture microdissection (LCM) approach was used to individually collect pericarp, aleurone, embryo and endosperm from grains 10 days after fertilization. Subsequent RNA-Seq analysis in these tissues identified 7760 differentially expressed genes. Analysis of promoter sequences of tissue-specific genes identified many known and novel cis-elements important for grain filling and seed development. Using the identified differentially expressed genes, comprehensive spatial gene expression pathways were built for accumulation of starch, proteins, lipids, and iron. The extensive transcriptomic analysis provided novel insights about nutrient partitioning mechanisms; for example, it revealed a gradient in seed storage protein accumulation across the four tissue types analysed. The analysis also revealed that the partitioning of various minerals, such as iron, is most likely regulated through transcriptional control of their transporters. We present the extensive analysis from this study as an interactive online tool that provides a much-needed resource for future functional genomics studies aimed to improve grain quality and seed development.


Assuntos
Oryza , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nutrientes , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
9.
Chem Biol Interact ; 331: 109226, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971122

RESUMO

Presence of Simple Sequence Repeats (SSRs), both in genic and intergenic regions, have been widely studied in eukaryotes, prokaryotes, and viruses. In the current study, we undertook a survey to analyze the frequency and distribution of microsatellites or SSRs in multiple genomes of Coronaviridae members. We successfully identified 919 SSRs with length ≥12 bp across 55 reference genomes majority of which (838 SSRs) were found abundant in genic regions. The in-silico analysis further identified the preferential abundance of hexameric SSRs than any other size-based motif class. Our analysis shows that the genome size and GC content of the genome had a weak influence on SSR frequency and density. However, we find a positive correlation of SSRs GC content with genomic GC content. We also report relatively low abundances of all theoretically possible 501 repeat motif classes in all the genomes of Coronaviridae. The majority of SSRs were AT-rich. Overall, we see an underrepresentation of SSRs across the genomes of Coronaviridae. Besides, our integrative study highlights the presence of SSRs in ORF1ab (nsp3, nsp4, nsp5A_3CLpro and nsp5B_3CLpro, nsp6, nsp10, nsp12, nsp13, & nsp15 domains), S, ORF3a, ORF7a, N & 3' UTR regions of SARS-CoV-2 and harbours multiple mutations (3'UTR and ORF1ab SSRs serving as major mutational hotspots). This indicates the genic SSRs are under selection pressure against mutations that might alter the reading frame and at the same time responsible for rapid protein evolution. Our preliminary results indicate the significance of the limited repertoire of SSRs in the genomes of Coronaviridae.


Assuntos
Coronaviridae/genética , Repetições de Microssatélites/genética , Regiões 3' não Traduzidas , Composição de Bases , Sequência de Bases , Betacoronavirus/genética , Evolução Molecular , Genoma Viral , Humanos , Mutação , Poliproteínas , SARS-CoV-2 , Proteínas Virais/genética
10.
Life Sci ; 250: 117541, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32169520

RESUMO

AIM: Nontuberculous mycobacterial (NTM) infection such as endophthalmitis, dacryocystitis, and canaliculitis are pervasive across the globe and are currently managed by antibiotics. However, the recent cases of Mycobacteroides developing drug resistance reported along with the improper practice of medicine intrigued us to explore its genomic and proteomic canvas at a global scale and develop a chimeric vaccine against Mycobacteroides. MAIN METHODS: We carried out a vivid genomic study on five recently sequenced strains of Mycobacteroides and explored their Pan-core genome/proteome in three different phases. The promiscuous antigenic proteins were identified via a subtractive proteomics approach that qualified for virulence causation, resistance and essentiality factors for this notorious bacterium. An integrated pipeline was developed for the identification of B-Cell, MHC (Major histocompatibility complex) class I and II epitopes. KEY FINDINGS: Phase I identified the shreds of evidence of reductive evolution and propensity of the Pan-genome of Mycobacteroides getting closed soon. Phase II and Phase III produced 8 vaccine constructs. Our final vaccine construct, V6 qualified for all tests such as absence for allergenicity, presence of antigenicity, etc. V6 contains ß-defensin as an adjuvant, linkers, Lysosomal-associated membrane protein 1 (LAMP1) signal peptide, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Besides, V6 also interacts with a maximum number of MHC molecules and the TLR4/MD2 (Toll-like receptor 4/Myeloid differentiation factor 2) complex confirmed by docking and molecular dynamics simulation studies. SIGNIFICANCE: The knowledge harnessed from the current study can help improve the current treatment regimens or in an event of an outbreak and propel further related studies.


Assuntos
Vacinas Bacterianas/química , Infecções por Bactérias Gram-Positivas/prevenção & controle , Mycobacteriaceae/genética , Vacinologia , Alelos , Linfócitos B/imunologia , Bacteriófagos , Sistemas CRISPR-Cas , Biologia Computacional , Farmacorresistência Bacteriana , Epitopos , Epitopos de Linfócito T/genética , Microbioma Gastrointestinal , Genoma Bacteriano , Genômica , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunoterapia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacteriaceae/patogenicidade , Proteoma , Virulência
11.
Microb Pathog ; 125: 129-143, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30217517

RESUMO

Usutu Virus (USUV; flavivirus) is a re-emerging pathogen invading the territories of European countries, Asia, and Africa. It is a mosquito-borne zoonotic virus with a bi-directional transmission route from animal to human and vice versa, and causes neurological disorders such as meningoencephalitis in bats, Homo sapiens, birds and horses. Due to limited availability of information about USUV and its deleterious effects on neural cells causing neurologic impairments, it becomes imperative to study this virus in detail to equip ourselves with a solution beforehand. The current study aims to identify immunodominant peptides that could be exploited in future for designing global peptide vaccine for combating the infections caused by USUV. In this study, an immunoinformatics approach was applied to evaluate the immunogenicity of 7 non-structural proteins and determined 64 continuous B-cell epitopes, numerous probable discontinuous B-cell epitopes, 64 MHC Class-I binders, 126 MHC class-II binders and 52 promiscuous binders with a maximum population coverage of 98.55%(MHC Class-I binder ofYP_164815.1 NS4a) and 81.81% (MHC Class-II binders of YP_164812.1 NS2a, YP_164813.1 NS2b, YP_164814.1 NS3, YP_164817.1 NS4b, YP_164818.1 NS5). Further, studies involving experimental validation of these predicted epitopes is warranted to ensure the potential of B-cells and T-cells stimulation for their effective use as vaccine candidates, and as diagnostic agents against USUV.


Assuntos
Biologia Computacional , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Flavivirus/imunologia , Epitopos Imunodominantes/imunologia , Proteínas não Estruturais Virais/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Flavivirus/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Epitopos Imunodominantes/genética , Ligação Proteica , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA