Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(15): 168154, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211204

RESUMO

In humans, the biosynthesis and trafficking of mitochondrial [4Fe-4S]2+ clusters is a highly coordinated process that requires a complex protein machinery. In a mitochondrial pathway among various proposed to biosynthesize nascent [4Fe-4S]2+ clusters, two [2Fe-2S]2+ clusters are converted into a [4Fe-4S]2+ cluster on a ISCA1-ISCA2 complex. Along this pathway, this cluster is then mobilized from this complex to mitochondrial apo recipient proteins with the assistance of accessory proteins. NFU1 is the accessory protein that first receives the [4Fe-4S]2+ cluster from ISCA1-ISCA2 complex. A structural view of the protein-protein recognition events occurring along the [4Fe-4S]2+ cluster trafficking as well as how the globular N-terminal and C-terminal domains of NFU1 act in such process is, however, still elusive. Here, we applied small-angle X-ray scattering coupled with on-line size-exclusion chromatography and paramagnetic NMR to disclose structural snapshots of ISCA1-, ISCA2- and NFU1-containing apo complexes as well as the coordination of [4Fe-4S]2+ cluster bound to the ISCA1-NFU1 complex, which is the terminal stable species of the [4Fe-4S]2+ cluster transfer pathway involving ISCA1-, ISCA2- and NFU1 proteins. The structural modelling of ISCA1-ISCA2, ISCA1-ISCA2-NFU1 and ISCA1-NFU1 apo complexes, here reported, reveals that the structural plasticity of NFU1 domains is crucial to drive protein partner recognition and modulate [4Fe-4S]2+ cluster transfer from the cluster-assembly site in the ISCA1-ISCA2 complex to a cluster-binding site in the ISCA1-NFU1 complex. These structures allowed us to provide a first rational for the molecular function of the N-domain of NFU1, which can act as a modulator in the [4Fe-4S]2+ cluster transfer.


Assuntos
Proteínas de Transporte , Proteínas Ferro-Enxofre , Humanos , Proteínas de Transporte/química , Proteínas Ferro-Enxofre/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
2.
J Am Chem Soc ; 144(13): 5713-5717, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343688

RESUMO

Human lipoyl synthase (LIAS) is an enzyme containing two [4Fe-4S] clusters (named FeSRS and FeSaux) involved in the biosynthesis of the lipoyl cofactor. The mechanism by which a [4Fe-4S] cluster is inserted into LIAS has thus far remained elusive. Here we show that NFU1 and ISCA1 of the mitochondrial iron-sulfur cluster assembly machinery, via forming a heterodimeric complex, are the key factors for the insertion of a [4Fe-4S] cluster into the FeSRS site of LIAS. In this process, the crucial actor is the C-domain of NFU1, which, by exploiting a protein-interaction affinity gradient increasing from ISCA1 to LIAS, drives the cluster to its final destination.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Enxofre/metabolismo
3.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063696

RESUMO

Multiple mitochondrial dysfunctions syndrome (MMDS) is a rare neurodegenerative disorder associated with mutations in genes with a vital role in the biogenesis of mitochondrial [4Fe-4S] proteins. Mutations in one of these genes encoding for BOLA3 protein lead to MMDS type 2 (MMDS2). Recently, a novel phenotype for MMDS2 with complete clinical recovery was observed in a patient containing a novel variant (c.176G > A, p.Cys59Tyr) in compound heterozygosity. In this work, we aimed to rationalize this unique phenotype observed in MMDS2. To do so, we first investigated the structural impact of the Cys59Tyr mutation on BOLA3 by NMR, and then we analyzed how the mutation affects both the formation of a hetero-complex between BOLA3 and its protein partner GLRX5 and the iron-sulfur cluster-binding properties of the hetero-complex by various spectroscopic techniques and by experimentally driven molecular docking. We show that (1) the mutation structurally perturbed the iron-sulfur cluster-binding region of BOLA3, but without abolishing [2Fe-2S]2+ cluster-binding on the hetero-complex; (2) tyrosine 59 did not replace cysteine 59 as iron-sulfur cluster ligand; and (3) the mutation promoted the formation of an aberrant apo C59Y BOLA3-GLRX5 complex. All these aspects allowed us to rationalize the unique phenotype observed in MMDS2 caused by Cys59Tyr mutation.


Assuntos
Glutarredoxinas/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Cisteína/genética , Glutarredoxinas/ultraestrutura , Humanos , Proteínas Ferro-Enxofre/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Simulação de Acoplamento Molecular , Complexos Multiproteicos , Mutação , Ressonância Magnética Nuclear Biomolecular , Fenótipo
4.
J Mol Biol ; 433(10): 166924, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33711344

RESUMO

The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.


Assuntos
Apoproteínas/química , Proteínas de Transporte/química , Proteínas Ferro-Enxofre/química , Ferro/química , Mitocôndrias/química , Proteínas Mitocondriais/química , Enxofre/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Enxofre/metabolismo
5.
Sci Rep ; 9(1): 13987, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562349

RESUMO

Highly porous particles with internal triply periodic minimal surfaces were investigated for sorption of proteins. The visualization of the complex ordered morphology requires complementary advanced methods of electron microscopy for 3D imaging, instead of a simple 2D projection: transmission electron microscopy (TEM) tomography, slice-and-view focused ion beam (FIB) and serial block face (SBF) scanning electron microscopy (SEM). The capability of each method of 3D image reconstruction was demonstrated and their potential of application to other synthetic polymeric systems was discussed. TEM has high resolution for details even smaller than 1 nm, but the imaged volume is relatively restricted (2.5 µm)3. The samples are pre-sliced in an ultramicrotome. FIB and SBF are coupled to a SEM. The sample sectioning is done in situ, respectively by an ion beam or an ultramicrotome, SBF, a method so far mostly applied only to biological systems, was particularly highly informative to reproduce the ordered morphology of block copolymer particles with 32-54 nm nanopores and sampling volume (20 µm)3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA