Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 99(9): 1237-1250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018017

RESUMO

Diabetic polyneuropathy (DPN) is the most common complication in diabetes and can be painful in up to 26% of all diabetic patients. Peripheral nerves are shielded by the blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels. So far, there are conflicting results regarding the role and function of the BNB in the pathophysiology of DPN. In this study, we analyzed the spatiotemporal tight junction protein profile, barrier permeability, and vessel-associated macrophages in Wistar rats with streptozotocin-induced DPN. In these rats, mechanical hypersensitivity developed after 2 weeks and loss of motor function after 8 weeks, while the BNB and the blood-DRG barrier were leakier for small, but not for large molecules after 8 weeks only. The blood-spinal cord barrier remained sealed throughout the observation period. No gross changes in tight junction protein or cytokine expression were observed in all barriers to blood. However, expression of Cldn1 mRNA in perineurium was specifically downregulated in conjunction with weaker vessel-associated macrophage shielding of the BNB. Our results underline the role of specific tight junction proteins and BNB breakdown in DPN maintenance and differentiate DPN from traumatic nerve injury. Targeting claudins and sealing the BNB could stabilize pain and prevent further nerve damage. KEY MESSAGES: • In diabetic painful neuropathy in rats: • Blood nerve barrier and blood DRG barrier are leaky for micromolecules. • Perineurial Cldn1 sealing the blood nerve barrier is specifically downregulated. • Endoneurial vessel-associated macrophages are also decreased. • These changes occur after onset of hyperalgesia thereby maintaining rather than inducing pain.


Assuntos
Barreira Hematoneural/metabolismo , Permeabilidade Capilar , Claudina-1/metabolismo , Neuropatias Diabéticas/metabolismo , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Junções Íntimas/metabolismo , Animais , Comportamento Animal , Barreira Hematoneural/patologia , Claudina-1/genética , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Macrófagos/patologia , Masculino , Atividade Motora , Limiar da Dor , Ratos Wistar , Estreptozocina , Junções Íntimas/genética , Junções Íntimas/patologia
2.
Antioxid Redox Signal ; 34(16): 1260-1279, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977733

RESUMO

Aims: Delphinidin (DEL) is a plant-derived antioxidant with clinical potential to treat inflammatory pain but suffers from poor solubility and low bioavailability. The aim of the study was to develop a well-tolerated cyclodextrin (CD)-DEL complex with enhanced bioavailability and to investigate the mechanisms behind its antinociceptive effects in a preclinical model of inflammatory pain. Results: CD-DEL was highly soluble and stable in aqueous solution, and was nontoxic. Systemic administration of CD-DEL reversed mechanical and heat hyperalgesia, while its local application into the complete Freund's adjuvant (CFA)-induced inflamed paw dose-dependently reduced mechanical hyperalgesia, paw volume, formation of the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE), and tissue migration of CD68+ macrophages. CD-DEL also directly prevented 4-HNE-induced mechanical hyperalgesia, cold allodynia, and an increase in the intracellular calcium concentration into transient receptor potential ankyrin 1 expressing cells. Both 4-HNE- and CFA-induced reactive oxygen species (ROS) levels were sensitive to CD-DEL, while its capacity to scavenge superoxide anion radicals (inhibitory concentration 50 [IC50]: 70 ± 5 µM) was higher than that observed for hydroxyl radicals (IC50: 600 ± 50 µM). Finally, CD-DEL upregulated heme oxygenase 1 that was prevented by HMOX-1 siRNA in vitro. Innovation:In vivo application of DEL to treat inflammatory pain is facilitated by complexation with CD. Apart from its antioxidant effects, the CD-DEL has a unique second antioxidative mechanism involving capturing of 4-HNE into the CD cavity followed by displacement and release of the ROS scavenger DEL. Conclusion: CD-DEL has antinociceptive, antioxidative, and anti-inflammatory effects making it a promising formulation for the local treatment of inflammatory pain.


Assuntos
Antocianinas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Hiperalgesia/tratamento farmacológico , beta-Ciclodextrinas/química , Aldeídos/metabolismo , Animais , Antocianinas/química , Antocianinas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Modelos Animais de Doenças , Estabilidade de Medicamentos , Adjuvante de Freund/efeitos adversos , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Ratos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1160-1169, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625382

RESUMO

The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors. Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.


Assuntos
Barreira Hematoneural/efeitos dos fármacos , MicroRNAs/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Barreira Hematoneural/metabolismo , Doença Crônica , Constrição Patológica/complicações , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/prevenção & controle , Masculino , Neuralgia/etiologia , Neuralgia/genética , Neuralgia/prevenção & controle , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/genética , Ratos Wistar , Proteínas Recombinantes/farmacologia , Proteínas de Junções Íntimas/efeitos dos fármacos , Proteínas de Junções Íntimas/genética , Ativador de Plasminogênio Tecidual/genética , Regulação para Cima/genética
4.
Ann N Y Acad Sci ; 1405(1): 71-88, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28753236

RESUMO

The blood-spinal cord barrier (BSCB) prevents leakage of molecules, such as pronociceptive mediators, into the spinal cord, but its role in the pathophysiology of neuropathic pain is not completely understood. Rats with chronic constriction injury (CCI) develop mechanical allodynia, thermal hypersensitivity, and reduced motor performance (Rota-Rod test) compared with sham-injured mice-similar to mice with spared nerve injury (SNI). The BSCB becomes permeable for small and large tracers 1 day after nerve ligation. Messenger RNA (mRNA) expression of tight junction proteins (TJPs) occludin, claudin-1, claudin-5, claudin-19, tricellulin, and ZO-1 significantly declines 7-14 days after CCI or SNI. ZO-1 and occludin are reduced in the cell membrane. In capillaries isolated from the spinal cord, immunoreactivity of claudin-5 and ZO-1 is fainter. In parallel, the number of platelet-derived growth factor receptor ß (PDGF-ß)+ and CD13+ pericytes in the spinal cord drops. Reduced levels of cytosolic transcription factors like ß-catenin, but not SMAD4 and SLUG, could account for reduced TJP mRNA. In summary, neuropathy-induced allodynia/hypersensitivity is accompanied by a loss of pericytes in the spinal cord and a leaky BSCB. A better understanding of these pathways and mechanisms in neuropathic pain might foster the design of novel treatments to maintain spinal cord homeostasis.


Assuntos
Pericitos/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Medula Espinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora/fisiologia , Pericitos/patologia , Doenças do Sistema Nervoso Periférico/patologia , Permeabilidade , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Proteína Smad4/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Medula Espinal/patologia , beta Catenina/metabolismo
5.
Sci Rep ; 7(1): 5447, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710476

RESUMO

Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC.


Assuntos
Anticorpos Monoclonais/farmacologia , Apolipoproteína A-I/farmacologia , Artrite Experimental/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Fosfatidilcolinas/antagonistas & inibidores , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Colágeno Tipo II/administração & dosagem , Feminino , Expressão Gênica , Células HEK293 , Membro Posterior , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Dor/induzido quimicamente , Dor/metabolismo , Dor/patologia , Técnicas de Patch-Clamp , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
6.
Anesth Analg ; 124(2): 675-685, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27930390

RESUMO

BACKGROUND: Inhibitors of cyclooxygenase, which block the formation of prostaglandin (PG) E2, are the standard treatment of inflammatory pain. These drugs, however, have serious gastrointestinal, renal, and cardiovascular side effects that limit their clinical use. Cyclodextrins are neutral glucose oligomers that form a hydrophilic outer and a hydrophobic interior cavity used to carry hydrophilic substances. Methyl-ß-cyclodextrins are used currently in several drugs as enhancers and also to deliver PGs. We therefore hypothesized that randomly methylated ß-cyclodextrins (RAMEB) could be used for pain treatment. METHODS: An in silico screening for important inflammatory mediators (eg, PGE2, substance P, bradykinin, and calcitonin gene-related peptide) was performed to predict the probability of these molecules binding to RAMEB. Thereafter, a comprehensive in vitro study investigated the complexation affinity of the best target toward RAMEB or its RAMEB-fraction L (FL) using capillary electrophoresis.Wistar rats were injected intraplantarly with complete Freund's adjuvant (CFA) for 96 hours to induce inflammatory hyperalgesia. Subsequently, rats were treated intraplantarly or intravenously either with RAMEB or RAMEB FL and compared with the respective controls. Parecoxib was used as positive control. Mechanical (paw pressure threshold, PPT) and thermal (paw withdrawal latency) nociceptive thresholds were determined before injection and at the indicated time points thereafter. Paw tissue was collected after treatments, and PGE2 and PGD2 contents were measured. Analysis of variance was used for data analysis followed by appropriate post hoc comparisons. RESULTS: In silico screening indicated that PGE2, with the highest affinity, was the best candidate for RAMEB binding. Likewise, in capillary electrophoresis experiments, RAMEB had a high affinity to form inclusion complexes with the PGE2 (stability constant [K], 360 1/M; 95% confidence interval [C]: 347.58-372.42 M). Local treatment with RAMEB alleviated CFA-induced mechanical (PPT: 76.25 g; 95% CI: 56.24-96.25 g) and thermal hyperalgesia (PPT: 8.50 seconds; 95% CI: 6.76-10.23 seconds). Moreover, a systemic administration of RAMEB decreased CFA-induced mechanical (PPT: 126.66 g; 95% CI: 114.54-138.77 g) and thermal hyperalgesia (paw withdrawal latency: 11.47 seconds; 95% CI: 9.26-13.68 seconds). RAMEB FL resulted in greater in vitro PGE2-binding capacity and decreased PG content as well as hyperalgesia in vivo to a similar extent. Motor activity of the rats was not altered by RAMEB or RAMEB FL. CONCLUSIONS: Capture of PGs by cyclodextrins could be a novel and innovative tool for the treatment of inflammatory pain and bypassing some unwanted side effects of cyclooxygenase inhibitors.


Assuntos
Dinoprostona/química , Dinoprostona/uso terapêutico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , beta-Ciclodextrinas/química , Animais , Simulação por Computador , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Eletroforese Capilar , Hiperalgesia/tratamento farmacológico , Mediadores da Inflamação , Isoxazóis/uso terapêutico , Masculino , Metilação , Dor/induzido quimicamente , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Antioxid Redox Signal ; 22(1): 1-14, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988310

RESUMO

UNLABELLED: The paracellular cleft within epithelia/endothelia is sealed by tight junction (TJ) proteins. Their extracellular loops (ECLs) are assumed to control paracellular permeability and are targets of pathogenes. We demonstrated that claudin-1 is crucial for paracellular tightening. Its ECL1 is essential for the sealing and contains two cysteines conserved throughout all claudins. AIMS: We prove the hypothesis that this cysteine motif forms a redox-sensitive intramolecular disulfide bridge and, hence, the claudin-1-ECL1 constitutes a functional structure which is associated to ECLs of this and other TJ proteins. RESULTS: The structure and function of claudin-1-ECL1 was elucidated by investigating sequences of this ECL as synthetic peptides, C1C2, and as recombinant proteins, and exhibited a ß-sheet binding surface flanked by an α-helix. These sequences bound to different claudins, their ECL1, and peptides with nanomolar binding constants. C-terminally truncated C1C2 (-4aaC) opened cellular barriers and the perineurium. Recombinant ECL1 formed oligomers, and bound to claudin-1 expressing cells. Oligomerization and claudin association were abolished by reducing agents, indicating intraloop disulfide bridging and redox sensitivity. INNOVATION: The structural and functional model based on our in vitro and in vivo investigations suggested that claudin-1-ECL1 constitutes a functional and ECL-binding ß-sheet, stabilized by a shielded and redox-sensitive disulfide bond. CONCLUSION: Since the ß-sheet represents a consensus sequence of claudins and further junctional proteins, a general structural feature is implied. Therefore, our model is of general relevance for the TJ assembly in normal and pathological conditions. C1C2-4aaC is a new drug enhancer that is used to improve pharmacological treatment through tissue barriers.


Assuntos
Claudina-1/química , Claudina-1/metabolismo , Animais , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Imuno-Histoquímica , Imunoprecipitação , Oxirredução , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Junções Íntimas/metabolismo
8.
J Control Release ; 185: 88-98, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24780266

RESUMO

The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using µ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve.


Assuntos
Claudina-1/química , Claudina-1/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Nervos Periféricos/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Sequência de Aminoácidos , Analgesia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Linhagem Celular , Claudina-1/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Nervos Periféricos/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Junções Íntimas/metabolismo
9.
Mol Pain ; 10: 10, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499354

RESUMO

BACKGROUND: Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund's adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. RESULTS: In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48-96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro ß-endorphin (ß-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released ß-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. CONCLUSION: Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4 antagonists as new treatments for sepsis and neuropathic pain might unexpectedly transiently enhance pain by impairing peripheral opioid analgesia.


Assuntos
Analgesia , Inflamação/tratamento farmacológico , Peptídeos Opioides/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/farmacologia , Humanos , Hiperalgesia/complicações , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nociceptividade/efeitos dos fármacos , Peptídeos Opioides/farmacologia , Ratos , Ratos Wistar , Receptores de IgG/metabolismo , Receptores Opioides/metabolismo , Receptor 2 Toll-Like/metabolismo , beta-Endorfina/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(29): E2018-27, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22733753

RESUMO

Selective targeting of sensory or nociceptive neurons in peripheral nerves remains a clinically desirable goal. Delivery of promising analgesic drugs is often impeded by the perineurium, which functions as a diffusion barrier attributable to tight junctions. We used perineurial injection of hypertonic saline as a tool to open the perineurial barrier transiently in rats and elucidated the molecular action principle in mechanistic detail: Hypertonic saline acts via metalloproteinase 9 (MMP9). The noncatalytic hemopexin domain of MMP9 binds to the low-density lipoprotein receptor-related protein-1, triggers phosphorylation of extracellular signal-regulated kinase 1/2, and induces down-regulation of the barrier-forming tight junction protein claudin-1. Perisciatic injection of any component of this pathway, including MMP9 hemopexin domain or claudin-1 siRNA, enables an opioid peptide ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin) and a selective sodium channel (NaV1.7)-blocking toxin (ProToxin-II) to exert antinociceptive effects without motor impairment. The latter, as well as the classic TTX, blocked compound action potentials in isolated nerves only after disruption of the perineurial barrier, which, in return, allowed endoneurally released calcitonin gene-related peptide to pass through the nerve sheaths. Our data establish the function and regulation of claudin-1 in the perineurium as the major sealing component, which could be modulated to facilitate drug delivery or, potentially, reseal the barrier under pathological conditions.


Assuntos
Analgésicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Nervos Periféricos/metabolismo , Solução Salina Hipertônica/administração & dosagem , Analgésicos/metabolismo , Animais , Western Blotting , Claudina-1 , Espectroscopia Dielétrica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunofluorescência , Metaloproteinase 9 da Matriz/farmacologia , Proteínas de Membrana/metabolismo , Limiar da Dor/efeitos dos fármacos , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Solução Salina Hipertônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA