Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(16): 4246-4260.e16, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38964326

RESUMO

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.


Assuntos
Serina Endopeptidases , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Humanos , Cristalografia por Raios X , Coronavirus/metabolismo , Coronavirus/química , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Modelos Moleculares , Ligação Proteica , Células HEK293 , Animais , Ativação Enzimática , Internalização do Vírus
2.
Nat Commun ; 15(1): 4996, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862527

RESUMO

Assessing the impact of SARS-CoV-2 on organelle dynamics allows a better understanding of the mechanisms of viral replication. We combine label-free holotomographic microscopy with Artificial Intelligence to visualize and quantify the subcellular changes triggered by SARS-CoV-2 infection. We study the dynamics of shape, position and dry mass of nucleoli, nuclei, lipid droplets and mitochondria within hundreds of single cells from early infection to syncytia formation and death. SARS-CoV-2 infection enlarges nucleoli, perturbs lipid droplets, changes mitochondrial shape and dry mass, and separates lipid droplets from mitochondria. We then used Bayesian network modeling on organelle dry mass states to define organelle cross-regulation networks and report modifications of organelle cross-regulation that are triggered by infection and syncytia formation. Our work highlights the subcellular remodeling induced by SARS-CoV-2 infection and provides an Artificial Intelligence-enhanced, label-free methodology to study in real-time the dynamics of cell populations and their content.


Assuntos
Teorema de Bayes , COVID-19 , Gotículas Lipídicas , Mitocôndrias , SARS-CoV-2 , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , COVID-19/metabolismo , Mitocôndrias/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Inteligência Artificial , Nucléolo Celular/metabolismo , Nucléolo Celular/virologia , Replicação Viral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Animais , Chlorocebus aethiops , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA