Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 365(6454): 676-679, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31320559

RESUMO

The epoch of first star formation in the early Universe was dominated by simple atomic and molecular species consisting mainly of two elements: hydrogen and helium. Gaining insight into this constitutive era requires a thorough understanding of molecular reactivity under primordial conditions. We used a cryogenic ion storage ring combined with a merged electron beam to measure state-specific rate coefficients of dissociative recombination, a process by which electrons destroy molecular ions. We found a pronounced decrease of the electron recombination rates for the lowest rotational states of the helium hydride ion (HeH+), compared with previous measurements at room temperature. The reduced destruction of cold HeH+ translates into an enhanced abundance of this primordial molecule at redshifts of first star and galaxy formation.

2.
Opt Express ; 24(1): 294-9, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832260

RESUMO

Sensors based on whispering gallery resonators have minute footprints and can push achievable sensitivities and resolutions to their limits. Here, we use a microbubble resonator, with a wall thickness of 500 nm and an intrinsic Q-factor of 10(7) in the telecommunications C-band, to investigate aerostatic pressure sensing via stress and strain of the material. The microbubble is made using two counter-propagating CO(2) laser beams focused onto a microcapillary. The measured sensitivity is 19 GHz/bar at 1.55 µm. We show that this can be further improved to 38 GHz/bar when tested at the 780 nm wavelength range. In this case, the resolution for pressure sensing can reach 0.17 mbar with a Q-factor higher than 5 × 10(7).

3.
Opt Lett ; 40(8): 1834-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872086

RESUMO

Coupled-mode-induced transparency is realized in a single microbubble whispering-gallery mode resonator. Using aerostatic tuning, we find that the pressure-induced shifting rates are different for different radial order modes. A finite element simulation considering both the strain and stress effects shows a GHz/bar difference, and this is confirmed by experiments. A transparency spectrum is obtained when a first-order mode shifts across a higher order mode through precise pressure tuning. The resulting lineshapes are fitted with the theory. This work lays a foundation for future applications in microbubble sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA