RESUMO
Microfluidic devices with open lattice structures, equivalent to a type of porous media, allow for the manipulation of fluid transport processes while having distinct structural, mechanical, and thermal properties. However, a fundamental understanding of the design principles for the solid structure in order to achieve consistent and desired flow patterns remains a challenge, preventing its further development and wider applications. Here, through quantitative and mechanistic analyses of the behavior of multi-phase phenomena that involve gas-liquid-solid interfaces, we present a design framework for microfluidic devices containing porous architectures (referred to as poroFluidics) for deterministic control of multi-phase fluid transport processes. We show that the essential properties of the fluids and solid, including viscosity, interfacial tension, wettability, as well as solid manufacture resolution, can be incorporated into the design to achieve consistent flow in porous media, where the desired spatial and temporal fluid invasion sequence can be realized. Experiments and numerical simulations reveal that different preferential flow pathways can be controlled by solid geometry, flow conditions, or fluid/solid properties. Our design framework enables precise, multifunctional, and dynamic control of multi-phase transport within engineered porous media.
RESUMO
Red blood cells (RBCs) undergo a progressive morphological transformation from smooth biconcave discocytes into rounder echinocytes with spicules on their surface during cold storage. The echinocytic morphology impacts RBCs' ability to flow through narrow sections of the circulation and therefore transfusion of RBC units with a high echinocytic content are thought to have a reduced efficiency. We use an optical tweezers-based technique where we directly trap and measure linear stiffness of RBCs under stress without the use of attached spherical probe particles or microfluidic flow to induce shear. We study RBC deformability with over 50 days of storage performing multiple stretches in blood plasma (serum with cold agglutinins removed to eliminate clotting). In particular, we find that discocytes and echinocytes do not show significant changes in linear stiffness in the small strain limit (â¼20% change in length) up to day 30 of the storage period, but do find differences between repeated stretches. By day 50 the linear stiffness of discocytes had increased to approximately that measured for echinocytes throughout the entire period of measurements. These changes in stiffness corresponded to recorded morphological changes in the discocytes as they underwent storage lesion. We believe our holographic trapping and direct measurement technique has applications to directly control and quantify forces that stretch other types of cells without the use of attached probes.
RESUMO
The discovery of microRNAs (miRNAs) has fundamentally transformed our understanding of gene regulation. The competing endogenous RNA (ceRNA) hypothesis postulates that messenger RNAs and other RNA transcripts, such as long non-coding RNAs and pseudogenes, can act as natural miRNA sponges. These RNAs influence each other's expression levels by competing for the same pool of miRNAs through miRNA response elements on their target transcripts, thereby modulating gene expression and protein activity. In recent years, these ceRNA regulatory networks have gained considerable attention in cancer research. Several studies have identified cancer-specific ceRNA networks. Nevertheless, prior bioinformatic analyses have focused on long-non-coding RNA-associated ceRNA networks. Here, we identify an extended ceRNA network (including both long non-coding RNAs and pseudogenes) shared across a group of five hormone-dependent (HD) cancers, i.e., prostate, breast, colon, rectal, and endometrial cancers, using data from The Cancer Genome Atlas (TCGA). We performed a functional enrichment analysis for differentially expressed genes in the shared ceRNA network of HD cancers, followed by a survival analysis to determine their prognostic ability. We identified two long non-coding RNAs, nine genes, and seventy-four miRNAs in the shared ceRNA network across five HD cancers. Among them, two genes and forty-one miRNAs were associated with at least one HD cancer survival. This study is the first to investigate pseudogene-associated ceRNAs across a group of related cancers and highlights the value of this approach to understanding the shared molecular pathogenesis in a group of related diseases.
RESUMO
BACKGROUND: Hormone-dependent cancers (HDC) are among the leading causes of death worldwide among both men and women. Some of the established risk factors of HDC include unhealthy lifestyles, environmental factors, and genetic influences. Numerous studies have been conducted to understand gene-cancer associations. Transcriptome-wide association studies (TWAS) integrate data from genome-wide association studies (GWAS) and gene expression (expression quantitative trait loci - eQTL) to yield meaningful information on biological pathways associated with complex traits/diseases. Recently, TWAS have enabled the identification of novel associations between HDC risk and protein-coding genes. METHODS: In the present study, we performed a TWAS analysis using the summary data-based Mendelian randomization (SMR)-heterogeneity in dependent instruments (HEIDI) method to identify microRNAs (miRNAs), a group of non-coding RNAs (ncRNAs) associated with HDC risk. We obtained eQTL and GWAS summary statistics from the ncRNA-eQTL database and the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog. RESULTS: We identified 13 TWAS-significant miRNAs at cis regions (±1 Mb) associated with HDC risk (two, five, one, two, and three miRNAs for prostate, breast, ovarian, colorectal, and endometrial cancers, respectively). Among them, eight novel miRNAs were recognized in HDC risk. Eight protein-coding genes targeted by TWAS-identified miRNAs (SIRT1, SOX4, RUNX2, FOXA1, ABL2, SUB1, HNRNPH1, and WAC) are associated with HDC functions and signaling pathways. CONCLUSION: Overall, identifying risk-associated miRNAs across a group of related cancers may help to understand cancer biology and provide novel insights into cancer genetic mechanisms. This customized approach can be applied to identify significant miRNAs in any trait/disease of interest.
RESUMO
In clinical assessments, the correlation between atmospheric air pollution and respiratory damage is highly complicated. Epidemiological studies show that atmospheric air pollution is largely responsible for the global proliferation of pulmonary disease. This is particularly significant, since most Computational Fluid Dynamics (CFD) studies to date have used monodisperse particles, which may not accurately reflect realistic inhalation patterns, since atmospheric aerosols are mostly polydisperse. The aim of this study is to investigate the anatomy and turbulent effects on polydisperse particle transport and deposition (TD) in the upper airways. The Euler-Lagrange approach is used for polydisperse particle TD prediction in both laminar and turbulent conditions. Various anatomical models are adopted to investigate the polydisperse particle TD under different flow conditions. Rossin-Rammler diameter distribution is used for the distribution of the initial particle diameter. The numerical results illustrate that airflow rate distribution at the right lung of a realistic model is higher than a non-realistic model. The CFD study also shows that turbulence effects on deposition are higher for larger diameter particles than with particles of smaller diameter. A significant amount of polydisperse particles are also shown to be deposited at the tracheal wall for CT-based model, whereas particles are mostly deposited at the carinal angle for the non-realistic model. A comprehensive, polydisperse particle TD analysis would enhance understanding of the realistic deposition pattern and decrease unwanted therapeutic aerosol deposition at the extrathoracic airways.
Assuntos
Simulação por Computador , Pulmão/metabolismo , Modelos Biológicos , Emissões de Veículos , Transporte Biológico , Humanos , Pulmão/patologia , Tamanho da PartículaRESUMO
An improved red blood cell (RBC) membrane model is developed based on the bilayer coupling model (BCM) to accurately predict the complete sequence of stomatocyte-discocyte-echinocyte (SDE) transformation of a RBC. The coarse-grained (CG)-RBC membrane model is proposed to predict the minimum energy configuration of the RBC from the competition between lipid-bilayer bending resistance and cytoskeletal shear resistance under given reference constraints. In addition to the conventional membrane surface area, cell volume and bilayer-leaflet-area-difference constraints, a new constraint: total-membrane-curvature is proposed in the model to better predict RBC shapes in agreement with experimental observations. A quantitative evaluation of several cellular measurements including length, thickness and shape factor, is performed for the first time, between CG-RBC model predicted and three-dimensional (3D) confocal microscopy imaging generated RBC shapes at equivalent reference constraints. The validated CG-RBC membrane model is then employed to investigate the effect of reduced cell volume and elastic length scale on SDE transformation, to evaluate the RBC deformability during SDE transformation, and to identify the most probable RBC cytoskeletal reference state. The CG-RBC membrane model can predict the SDE shape behaviour under diverse shape-transforming scenarios, in-vitro RBC storage, microvascular circulation and flow through microfluidic devices.
Assuntos
Algoritmos , Deformação Eritrocítica , Membrana Eritrocítica/metabolismo , Eritrócitos Anormais/metabolismo , Eritrócitos/metabolismo , Modelos Biológicos , Fenômenos Biomecânicos , Tamanho Celular , Membrana Eritrocítica/ultraestrutura , Eritrócitos/ultraestrutura , Eritrócitos Anormais/ultraestrutura , Humanos , Microscopia Eletrônica de VarreduraRESUMO
The atmospheric particles from different sources, and the therapeutic particles from various drug delivery devices, exhibit a complex size distribution, and the particles are mostly polydisperse. The limited available in vitro, and the wide range of in silico models have improved understanding of the relationship between monodisperse particle deposition and therapeutic aerosol transport. However, comprehensive polydisperse transport and deposition (TD) data for the terminal airways is still unavailable. Therefore, to benefit future drug therapeutics, the present numerical model illustrates detailed polydisperse particle TD in the terminal bronchioles for the first time. Euler-Lagrange approach and Rosin-Rammler diameter distribution is used for polydisperse particles. The numerical results show higher deposition efficiency (DE) in the right lung. Specifically, the larger the particle diameter (dp > 5 µm), the higher the DE at the bifurcation area of the upper airways is, whereas for the smaller particle (dp < 5 µm), the DE is higher at the bifurcation wall. The overall deposition pattern shows a different deposition hot spot for different diameter particle. These comprehensive lobe-specific polydisperse particle deposition studies will increase understanding of actual inhalation for particle TD, which could potentially increase the efficiency of pharmaceutical aerosol delivery at the targeted position of the terminal airways.
Assuntos
Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/metabolismo , Bronquíolos/anatomia & histologia , Bronquíolos/irrigação sanguínea , Microesferas , Ar , Transporte Biológico , Modelos AnatômicosRESUMO
BACKGROUND: Red blood cells (RBCs) deform significantly and repeatedly when passing through narrow capillaries and delivering dioxygen throughout the body. Deformability of RBCs is a key characteristic, largely governed by the mechanical properties of the cell membrane. This study investigated RBC mechanical properties using atomic force microscopy (AFM) with the aim to develop a coarse-grained particle method model to study for the first time RBC indentation in both 2D and 3D. This new model has the potential to be applied to further investigate the local deformability of RBCs, with accurate control over adhesion, probe geometry and position of applied force. RESULTS: The model considers the linear stretch capacity of the cytoskeleton, bending resistance and areal incompressibility of the bilayer, and volumetric incompressibility of the internal fluid. The model's performance was validated against force-deformation experiments performed on RBCs under spherical AFM indentation. The model was then used to investigate the mechanisms which absorbed energy through the indentation stroke, and the impact of varying stiffness coefficients on the measured deformability. This study found the membrane's bending stiffness was most influential in controlling RBC physical behaviour for indentations of up to 200 nm. CONCLUSIONS: As the bilayer provides bending resistance, this infers that structural changes within the bilayer are responsible for the deformability changes experienced by deteriorating RBCs. The numerical model presented here established a foundation for future investigations into changes within the membrane that cause differences in stiffness between healthy and deteriorating RBCs, which have already been measured experimentally with AFM.
Assuntos
Eritrócitos/citologia , Teste de Materiais , Fenômenos Mecânicos , Microscopia de Força Atômica , Fenômenos Biomecânicos , Adesão Celular , Forma Celular , Humanos , Modelos BiológicosRESUMO
To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region.
Assuntos
Pulmão/fisiologia , Modelos Biológicos , Nanopartículas , Aerossóis , Transporte Biológico , Simulação por Computador , Exercício Físico , Humanos , Tamanho da Partícula , SonoRESUMO
BACKGROUND: Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. METHODS: An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. RESULTS: Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. CONCLUSIONS: A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures.