Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
NPJ Microgravity ; 10(1): 20, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378811

RESUMO

Recent growth in space systems has seen increasing capabilities packed into smaller and lighter Earth observation and deep space mission spacecraft. Phase-change materials (PCMs) are nonvolatile, reconfigurable, fast-switching, and have recently shown a high degree of space radiation tolerance, thereby making them an attractive materials platform for spaceborne photonics applications. They promise robust, lightweight, and energy-efficient reconfigurable optical systems whose functions can be dynamically defined on-demand and on-orbit to deliver enhanced science or mission support in harsh environments on lean power budgets. This comment aims to discuss the recent advances in rapidly growing PCM research and its potential to transition from conventional terrestrial optoelectronics materials platforms to versatile spaceborne photonic materials platforms for current and next-generation space and science missions. Materials International Space Station Experiment-14 (MISSE-14) mission-flown PCMs outside of the International Space Station (ISS) and key results and NASA examples are highlighted to provide strong evidence of the applicability of spaceborne photonics.

3.
Nano Lett ; 21(10): 4388-4393, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33955762

RESUMO

Various nanofillers have been adopted to enhance the thermal conductivity of polymer nanocomposites. While it is widely believed that the contact thermal resistance between adjacent nanofillers can play an important role in limiting thermal conductivity enhancement of composite materials, lack of direct experimental data poses a significant challenge to perceiving the effects of these contacts. This study reports on direct measurements of thermal transport through contacts between silver nanowires (AgNWs) with a poly(vinylpyrrolidone) (PVP) interlayer. The results indicate that a PVP layer as thin as 4 nm can increase the total thermal resistance of the contact by up to an order of magnitude, when compared to bare AgNWs, even with a larger contact area. On the other hand, the thermal boundary resistance for PVP/silver interfaces could be significantly lower than that between polymer-carbon nanotubes (CNTs). Analyses based on these understandings further show why AgNWs could be more effective nanofillers than CNTs.

4.
Nano Lett ; 20(10): 7389-7396, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32833462

RESUMO

Silver nanowires have been widely adopted as nanofillers in composite materials used for various applications. Electrical and thermal properties of these composites are critical for proper device operation, and highly depend on transport through the nanowires and their contacts, yet studies on silver nanowires have been limited to one or two samples and no solid data have been reported for individual contacts. Through systematic measurements of silver nanowires of different sizes, we show that the Lorenz number increases with decreasing wire diameter and has a higher value at wire contacts. Examination of the corresponding electrical and thermal conductivities indicates that these changes are due to contributions of phonons that become more important as a result of elastic stiffening. The derived contact thermal conductance per unit area between silver nanowires is ∼10 times that between carbon nanotubes. This helps to explain the more significant thermal conductivity enhancement of silver nanowires-based composites.

5.
J Magn Magn Mater ; 458: 365-370, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33867623

RESUMO

Experimental results of the complex magnetic permeability (µ) and the electrical conductivity (σ) of a granular paramagnetic Gadolinium Gallium Garnet (GGG: 0.3 to 26 Vol. %) and Teflon (PTFE) system are presented, and discussed in relation to previously published (conductivity) and unpublished (permeability) studies on granular Fe3O4 - talc and Ni - talc wax systems. In these systems, plots of the real conductivity ( σ m ' ) against the volume fraction (φ) lie on a characteristic sigmoid curves that when fitted to the Two Exponent Phenomenological Percolation Equation (TEPPE), confirm the existence of "percolation microstructures" with critical volume fractions (φ c). The plots of the real and imaginary permeability ( µ m ' ) and ( µ m ″ ), satisfactorily fit to the TEPPE using the φ c obtained in each case from the "conductivity" measurements. In all three cases, the conductivity results gave the exponent t > 2, and the permeability results gave t < 1.

6.
Compos Sci Technol ; 166: 10-19, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31359899

RESUMO

Molecular dynamics simulations of carbon nanotube (CNT) composites, in which the CNTs are continuous across the periodic boundary, overestimate the experimentally measured mechanical properties of CNT composites along the fiber direction. Since the CNTs in these composites are much shorter than the composite dimensions, load must be transferred either directly between CNTs or through the matrix, a mechanism that is absent in simulations of effectively continuous CNTs. In this study, the elastic and fracture properties of high volume fraction discontinuous carbon nanotube/amorphous carbon composite systems were compared to those of otherwise equivalent continuous CNT composites using ReaxFF reactive molecular dynamics simulations. These simulations were used to show how the number of nanotube-matrix interfacial covalent bonds affect composite mechanical properties. Furthermore, the mechanical impact of interfacial bonding was decomposed to reveal its effect on the properties of the CNTs, the interfacial layer of matrix, and the bulk matrix. For the composites with continuous reinforcement, it was found that any degree of interfacial bonding has a negative impact on axial tensile strength and stiffness. This is due to disruption of the structure of the CNTs and interfacial matrix layer by the interfacial bonds. For the discontinuous composites, the modulus was maximized between 4%-7% interfacial bonding and the strength continues to increase up to the highest levels of interfacial bonding studied. Areas of low stress and voids were observed in the simulated discontinuous composites at the ends of the tubes, from which fracture was observed to initiate. Experimental carbon nanotube yarn composites were fabricated and tested. The results were used to illustrate knockdown factors relative to the mechanical performance of the tubes themselves.

7.
ACS Nano ; 9(12): 11942-50, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26529472

RESUMO

Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

8.
ACS Appl Mater Interfaces ; 6(21): 18832-43, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25325388

RESUMO

Thermoset/carbon nanotube (CNT) sheet nanocomposites were successfully fabricated by resistive heating assisted infiltration and cure (RHAIC) of the polymer matrix resin. Resistive heating takes advantage of the electrical and thermal conductivity of CNTs to rapidly and uniformly introduce heat into the CNT sheet. Heating the CNT sheet reduces the viscosity of the polymer resin due to localized temperature rise in close proximity to the resin, which enhances resin flow, penetration, and wetting of the CNT reinforcement. Once the resin infusion process is complete, the applied power is increased to raise the temperature of the CNT sheet, which rapidly cures the polymer matrix. Tensile tests were used to evaluate the mechanical properties of the processed thermoset/CNT sheet nanocomposites. The improved wetting and adhesion of the polymer resin to the CNT reinforcement yield significant improvement of thermoset/CNT nanocomposite mechanical properties. The highest specific tensile strength of bismaleimide(BMI)/CNT sheet nanocomposites was obtained to date was 684 MPa/(g/cm(3)), using 4 V (2 A) for resin infiltration, followed by precure at 10 V (6 A) for 10 min and post curing at 240 °C for 6 h in an oven. The highest specific Young's modulus of BMI/CNT sheet nanocomposite was 71 GPa/(g/cm(3)) using resistive heating infiltration at 8.3 V (4.7 A) for 3 min followed by resistive heating cure at 12.5 V (7 A) for 30 min. In both cases, the CNT sheets were stretched and held in tension to prevent relaxation of the aligned CNTs during the course of RHAIC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA