Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(7): e0196422, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37358450

RESUMO

Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains. Besides displaying a highly pathogenic phenotype in newborn piglets, in comparison with the parental virus, the rescued recombinant PEDV-MN was used to confirm that the PEDV spike gene has an important role in PEDV virulence and that the impact of an intact PEDV ORF3 on viral pathogenicity is modest. Moreover, a chimeric virus with a TGEV spike gene in the PEDV backbone generated with RGS was able to replicate efficiently in vivo and could be readily transmitted between piglets. Although this chimeric virus did not cause severe disease upon the initial infection of piglets, there was evidence of increasing pathogenicity upon transmission to contact piglets. The RGS described in this study constitutes a powerful tool with which to study PEDV pathogenesis and can be used to generate vaccines against porcine enteric coronaviruses. IMPORTANCE PEDV is a swine pathogen that is responsible for significant animal and economic losses worldwide. Highly pathogenic variants can lead to a mortality rate of up to 100% in newborn piglets. The generation of a reverse genetics system for a highly virulent PEDV strain originating from the United States is an important step in phenotypically characterizing PEDV. The synthetic PEDV mirrored the authentic isolate and displayed a highly pathogenic phenotype in newborn piglets. With this system, it was possible to characterize potential viral virulence factors. Our data revealed that an accessory gene (ORF3) has a limited impact on pathogenicity. However, as it is also now known for many coronaviruses, the PEDV spike gene is one of the main determinants of pathogenicity. Finally, we show that the spike gene of another porcine coronavirus, namely, TGEV, can be accommodated in the PEDV genome background, suggesting that similar viruses can emerge in the field via recombination.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Estados Unidos , Suínos , Virulência/genética , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Genética Reversa , Infecções por Coronavirus/prevenção & controle , Nucleotídeos , Diarreia
2.
Viruses ; 11(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489915

RESUMO

Vaccination is one of the most important tools to protect pigs against infection with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1). Although neutralizing antibodies are considered to represent an important mechanism of protective immunity, anti-PRRSV antibodies, in particular at subneutralizing concentrations, have also been reported to exacerbate PRRSV infection, probably through FcγR-mediated uptake of antibody-opsonized PRRSV, resulting in enhanced infection of, and replication in, target cells. Therefore, we investigated this pathway using sera from an animal experiment in which vaccine-mediated enhancement of clinical symptoms was observed. Three groups of six pigs were vaccinated with an inactivated PRRSV vaccine based on the PRRSV-1 subtype 3 strain Lena and challenged after a single or a prime-boost immunization protocol, or injected with PBS. We specifically tested if sera obtained from these animals can enhance macrophage infections, viral shedding, or cytokine release at different dilutions. Neither the presence of neutralizing antibodies nor general anti-PRRSV antibodies, mediated an enhanced infection, increased viral release or cytokine production by macrophages. Taken together, our data indicate that the exacerbated disease was not caused by antibodies.


Assuntos
Anticorpos Antivirais/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/efeitos adversos , Citocinas/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Sus scrofa , Suínos , Vacinação/efeitos adversos , Eliminação de Partículas Virais
3.
Vet Microbiol ; 231: 139-146, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955801

RESUMO

The recent emergence of highly pathogenic porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) strains has caused severe economic losses. The biological elements defining virulence and pathogenicity are still unclear. In vitro characteristics using natural target cells of PRRSV provide important information to understand the basis of virulence at the cellular level, and provide a mean to reduce animal experimentations to achieve this goal. Here, we compared PRRSV strains from two geographically different regions, with varying in vivo characteristics, in terms of their interactions with monocyte-derived macrophages (MDMs). The strains included Lena and BOR59 from Belarus, and ILI6 from Russia, as well as PR11 and PR40, both from Italy. As a reference, we used a cell culture-adapted version of Lelystad, LVP. MDMs were pre-treated with IFNγ, IL-4 or IFNß, in order to understand responses in polarized and antiviral MDMs. In general, independent of the geographical origin, the strains with high virulence infected a higher percentage of MDMs and replicated to higher titers. These virulence-dependent differences were most pronounced when the MDMs had been treated with IFNß. Differentiation between intermediate and low virulent PRRSV was difficult, due to variations between different experiments, but LVP differed clearly from all field strains. IFNα and IL-10 were not detected in any experiment, but PR40 induced TNF and IL-1ß. Taken together, these results validate the MDM model to understand pathogenicity factors of PRRSV and confirm the importance of the escape from type I and II IFN-mediated effects for PRRSV virulence.


Assuntos
Macrófagos/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Interleucina-10/farmacologia , Itália , Macrófagos/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , República de Belarus , Federação Russa , Suínos , Virulência
4.
Dev Comp Immunol ; 84: 181-192, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29408047

RESUMO

Considering that macrophage functions are strongly impacted by the local tissue environment and the type of immune response, the aim of this study was to carefully set the methodological baseline for phenotype and functions of polarized porcine monocyte-derived macrophages. To this end, macrophages were generated in autologous serum alone or with colony-stimulating factor (CSF)-1 or CSF-2, and subsequently polarized with interferon (IFN)γ, interleukin-4 or IFNß. IFNγ promoted expression of MHC class I, MHC class II, CD11a, and CD40 as well as LPS-induced IL-6 and IL-12. A hallmark of interleukin-4 was Arginase 1 and CD203a upregulation, without abrogating pro-inflammatory cytokine production. IFNß induced CD169, MHC class I, CD40, CD80/86, but suppressed IL-6, IL-12 and tumor-necrosis-factor secretion. CSF-2 alone altered macrophage differentiation and promoted an IFNγ-like polarization. Altogether, the results provide a comprehensive overview of porcine macrophage polarization, and demonstrate commonalities with other species as well as peculiarities of the pig.


Assuntos
Interferon beta/metabolismo , Interferon gama/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Suínos/imunologia , Animais , Antígenos CD/metabolismo , Arginase/metabolismo , Diferenciação Celular , Células Cultivadas , Fatores Estimuladores de Colônias/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Interleucina-4/metabolismo , Especificidade da Espécie
5.
Front Microbiol ; 7: 771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458429

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) represents a macrophage (MØ)-tropic virus which is unable to induce interferon (IFN) type I in its target cells. Nevertheless, infected pigs show a short but prominent systemic IFN alpha (IFN-α) response. A possible explanation for this discrepancy is the ability of plasmacytoid dendritic cells (pDC) to produce IFN-α in response to free PRRSV virions, independent of infection. Here, we show that the highly pathogenic PRRSV genotype 1 strain Lena is unique in not inducing IFN-α production in pDC, contrasting with systemic IFN-α responses found in infected pigs. We also demonstrate efficient pDC stimulation by PRRSV Lena-infected MØ, resulting in a higher IFN-α production than direct stimulation of pDC by PRRSV virions. This response was strain-independent, required integrin-mediated intercellular contact, intact actin filaments in the MØ and was partially inhibited by an inhibitor of neutral sphingomyelinase. Although infected MØ-derived exosomes stimulated pDC, an efficient delivery of the stimulatory component was dependent on a tight contact between pDC and the infected cells. In conclusion, with this mechanism the immune system can efficiently sense PRRSV, resulting in production of considerable quantities of IFN-α. This is adding complexity to the immunopathogenesis of PRRSV infections, as IFN-α should alert the immune system and initiate the induction of adaptive immune responses, a process known to be inefficient during infection of pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA