Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 41(1-2): 59-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37551969

RESUMO

Mild traumatic brain injury (mTBI) accounts for 70-90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipid alterations after mTBI, and determine if these changes were associated with clinical outcomes. Patients with mTBI (Glasgow Coma Score [GCS] ≥13 and loss of consciousness <30 min) were recruited. A total of 84 mTBI subjects were enrolled after admission to a level I trauma center, with the majority having evidence of traumatic intracranial hemorrhage on brain computed tomography (CT). Plasma samples were collected within 24 h of injury with 32 mTBI subjects returning at 3 months after injury for a second plasma sample to be collected. Thirty-five healthy volunteers were enrolled as controls and had a one-time blood draw. Lipid metabolomics was performed on plasma samples from each subject. Fold change of selected lipid metabolites was determined. Multivariable regression models were created to test associations between lipid metabolites and discharge and 6-month Glasgow Outcomes Scale-Extended (GOSE) outcomes (dichotomized between "good" [GOSE ≥7] and "bad" [GOSE ≤6] functional outcomes). Plasma levels of 31 lipid metabolites were significantly associated with discharge GOSE using univariate models; three of these metabolites were significantly increased, while 14 were significantly decreased in subjects with good outcomes compared with subjects with poor outcomes. In multivariable logistic regression models, higher circulating levels of the lysophospholipids (LPL) 1-linoleoyl-glycerophosphocholine (GPC) (18:2), 1-linoleoyl-GPE (18:2), and 1-linolenoyl-GPC (18:3) were associated with both good discharge GOSE (odds ratio [OR] 12.2 [95% CI 3.35, 58.3], p = 5.23 × 10-4; OR 9.43 [95% CI 2.87, 39.6], p = 7.26 × 10-4; and OR 5.26 [95% CI 1.99, 16.7], p = 2.04 × 10-3, respectively) and 6-month (OR 4.67 [95% CI 1.49, 17.7], p = 0.013; OR 2.93 [95% CI 1.11, 8.87], p = 0.039; and OR 2.57 [95% CI 1.08, 7.11], p = 0.046, respectively). Compared with healthy volunteers, circulating levels of these three LPLs were decreased early after injury and had normalized by 3 months after injury. Logistic regression models to predict functional outcomes were created by adding each of the described three LPLs to a baseline model that included age and sex. Including 1-linoleoyl-GPC (18:2) (8.20% improvement, p = 0.009), 1-linoleoyl-GPE (18:2) (8.85% improvement, p = 0.021), or 1-linolenoyl-GPC (18:3) (7.68% improvement, p = 0.012), significantly improved the area under the curve (AUC) for predicting discharge outcomes compared with the baseline model. Models including 1-linoleoyl-GPC (18:2) significantly improved AUC for predicting 6-month outcomes (9.35% improvement, p = 0.034). Models including principal components derived from 25 LPLs significantly improved AUC for prediction of 6-month outcomes (16.0% improvement, p = 0.020). Our results demonstrate that higher plasma levels of LPLs (1-linoleoyl-GPC, 1-linoleoyl-GPE, and 1-linolenoyl-GPC) after mTBI are associated with better functional outcomes at discharge and 6 months after injury. This class of phospholipids may represent a potential therapeutic target.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/complicações , Lesões Encefálicas/complicações , Escala de Resultado de Glasgow , Lisofosfolipídeos , Lipídeos , Lesões Encefálicas Traumáticas/complicações , Escala de Coma de Glasgow
2.
Res Sq ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014126

RESUMO

Background: The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve functional outcomes after aSAH. Using an untargeted metabolomics approach, we sought to identify specific metabolites mediating these effects. Methods: Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N=12) or HPRO+NMES (N=12) and at 7 days as part of the INSPIRE protocol. Untargeted metabolomics were performed for each plasma sample. Paired fold changes were calculated for each metabolite among subjects in the HPRO+NMES group at baseline and 7 days after intervention. Changes in metabolites from baseline to 7 days were compared for the HPRO+NMES and SOC groups. Sparse partial least squared discriminant analysis (sPLS-DA) identified metabolites discriminating each group. Pearson's correlation coefficients were calculated between each metabolite and total protein per day, nitrogen balance, and muscle volume Multivariable models were developed to determine associations between each metabolite and muscle volume. Results: A total of 18 unique metabolites were identified including pre and post treatment and differentiating SOC vs HPRO+NMES. Of these, 9 had significant positive correlations with protein intake: N-acetylserine (ρ=0.61, P=1.56×10-3), N-acetylleucine (ρ=0.58, P=2.97×10-3), ß-hydroxyisovaleroylcarnitine (ρ=0.53, P=8.35×10-3), tiglyl carnitine (ρ=0.48, P=0.0168), N-acetylisoleucine (ρ=0.48, P=0.0183), N-acetylthreonine (ρ=0.47, P=0.0218), N-acetylkynurenine (ρ=0.45, P=0.0263), N-acetylvaline (ρ=0.44, P=0.0306), and urea (ρ=0.43, P=0.0381). In multivariable regression models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95%CI 1.01, 1.16)] and quadricep [OR 1.08 (95%CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95%CI 1.01, 1.09)] and quadricep [OR 1.04 (95%CI 1.00, 1.07)] muscle volume. N-acetylserine, N-acetylcitrulline, and b-hydroxyisovaleroylcarnitine were also associated with preserved temporalis or quadricep volume. Conclusions: Metabolites defining the HPRO+NMES intervention mainly consisted of amino acid derivatives. These metabolites had strong correlations with protein intake and were associated with preserved muscle volume.

3.
Med Biol Eng Comput ; 57(8): 1645-1656, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31079355

RESUMO

The prodromal stages of some neurological diseases have a distinct electrical profile which can potentially be leveraged for early diagnosis, predicting disease recurrence, monitoring of disease progression, and better understanding of the disease pathology. Gliomas are tumors that originate from glial cells present in the brain and spinal cord. Healthy glial cells support normal neuronal function and play an important role in modulating the regular electrical activity of neurons. However, gliomas can disrupt the normal electrical dynamics of the brain. Though experimental and clinical studies suggest that glioma and injury to glial cells disrupt electrical dynamics of the brain, whether these disruptions are present during the earliest stages of glioma and glial injury are unclear. The primary aim of this study is to investigate the effect of early in vitro glial pathology (glioma and glial injury in specific) on neuronal electrical activity. In particular, we investigated the effect of glial pathology on neural synchronization: an important phenomenon that underlies several central neurophysiological processes (ScienceDirect, 2018 ). We used two in vitro disease samples: (a) a sample in which cortical cultures were treated with anti-mitotic agents that deplete glial cells and (b) a glioma sample in which healthy cortical cells were cultured with CRL-2303 (an aggressive glioma cell line). Healthy cortical culture samples were used as controls. Cultures were established over a glass dish embedded with microelectrodes that permits simultaneous measurement of extracellular electrical activity from multiple sites of the culture. We observed that healthy cortical cultures produce spontaneous and synchronized oscillations which were attenuated in the absence of glial cells. The presence of glioma was associated with the emergence of two types of "abnormal electrical activity" each with distinct amplitude and frequency profile. Our results indicate that even early stages of glioma and glial injury are associated with distinct changes in neuronal electrical activity. Graphical abstract.


Assuntos
Córtex Cerebral/patologia , Eletrodiagnóstico/métodos , Glioma/fisiopatologia , Neurônios/patologia , Animais , Técnicas de Cultura de Células , Córtex Cerebral/citologia , Citarabina/toxicidade , Eletrodiagnóstico/instrumentação , Microeletrodos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador
4.
Cytokine ; 111: 334-341, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269030

RESUMO

BACKGROUND: Unregulated inflammatory and thrombotic responses have been proposed to be important causes of early brain injury and worse clinical outcomes after subarachnoid hemorrhage (SAH). OBJECTIVE: We hypothesize that SAH is characterized by an increased inflammatory and thrombotic state and disruption of associations between these states. METHODS: This is a retrospective cohort study of 60 patients with SAH. 23 patients with unruptured aneurysms (UA) and 77 patients with traumatic brain injury (TBI) were chosen as controls. Plasma cytokine levels were measured using a 41-plex human immunoassay kit, and cytokine patterns associated with SAH, UA and TBI were identified using statistical and informatics methods. RESULTS: SAH was characterized by an increase in several cytokines and chemokines, platelet-derived factors, and growth factors. Cluster analysis identified several cytokine clusters common in SAH, UA and TBI groups - generally grouped as platelet-derived, vascular and pro-inflammatory clusters. In the UA group, the platelet-derived cluster had an inverse relationship with the inflammatory cluster which was absent in SAH. Additionally, a cluster comprising of growth and colony stimulating factors was unique to SAH. CONCLUSIONS: A cluster of cytokines involved in growth and colony stimulation was unique to SAH. Negative associations between the thrombotic and inflammatory molecules were observed in UA but not in SAH. Further studies to examine the pathophysiology behind the cluster unique to SAH and the associations between the thrombotic and inflammatory cytokines are required.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Hemorragia Subaracnóidea/metabolismo , Plaquetas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Fatores Estimuladores de Colônias/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA