Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 46: 102603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116695

RESUMO

Personalized medicine approach in radiotherapy requires the delivery of precise dose to the tumor. The concept is to increase the effectiveness of radiotherapy while sparing the surrounding heathy tissue. This can be achieved by the use of high-Z metal-based nanoparticles (NPs) as radio-enhancers and PET imaging for mapping NPs distribution to guide the irradiation. In the present study, radio-enhancing platinum NPs were radiolabeled and imaged to assess their pharmacokinetics over time. PET imaging of these NPs revealed high enhanced permeation and retention effect. The maximal tumor accumulation (4.8 ± 0.8 %ID/cc) was observed at 24 h post-injection along with persistent accumulation of the NPs, especially at the tumor ring, even after several days. These properties positively suggest the potential clinical use of these NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Platina , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
2.
J Neuroendocrinol ; 34(4): e13121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355344

RESUMO

The modulation of the kisspeptin system holds promise as a treatment for human reproductive disorders and for managing livestock breeding. The design of analogs has overcome some unfavorable properties of the endogenous ligands. However, for applications requiring a prolongation of drug activity, such as ovulation induction in the ewe during the non-breeding season, additional improvement is required. To this aim, we designed and tested three formulations containing the kisspeptin analog C6. Two were based on polymeric nanoparticles (NP1 and NP2) and the third was based on hydrogels composed of a mixture of cyclodextrin polymers and dextran grafted with alkyl side chains (MD/pCD). Only the MD/pCD formulation prolonged C6 activity, as shown by monitoring luteinizing hormone (LH) plasma concentration (elevation duration 23.4 ± 6.1, 13.7 ± 4.7 and 12.0 ± 2.4 h for MD/pCD, NP1 and NP2, respectively). When compared with the free C6 (15 nmol/ewe), the formulated (MD/pCD) doses of 10, 15 and 30 nmol/ewe, but not the 90 nmol/ewe dose, provided a more gradual release of C6 as shown by an attenuated LH release during the first 6 h post-treatment. When tested during the non-breeding season without progestogen priming, only, the formulated 30 nmol/ewe dose triggered ovulation (50% of ewes). Hence, we showed that a formulation with an adapted action time would improve the efficacy of C6 with respect to inducing ovulation during the non-breeding season. This result suggests that formulations containing a kisspeptin analog might find applications in the management of livestock reproduction but also point to the possibility of their use for the treatment of some human reproductive pathologies.


Assuntos
Anestro , Kisspeptinas , Ovulação , Animais , Feminino , Kisspeptinas/farmacologia , Hormônio Luteinizante , Ovulação/efeitos dos fármacos , Reprodução , Ovinos
3.
Int J Pharm ; 610: 121230, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34718091

RESUMO

Highly porous nanoscale metal-organic frameworks (nanoMOFs) attract growing interest as drug nanocarriers. However, engineering "stealth" nanoMOFs with poly(ethylene glycol) (PEG) coatings remains a main challenge. Here we address the goal of coating nanoMOFs with biodegradable shells using novel cyclodextrin (CD)-based oligomers with a bulky structure to avoid their penetration inside the open nanoMOF porosity. The PEG chains were grafted by click chemistry onto the CDs which were further crosslinked by citric acid. Advantageously, the oligomers' free citrate units allowed their spontaneous anchoring onto the nanoMOFs by complexation with the iron sites in the top layers. Up to 31 wt% oligomers could be firmly attached by simple incubation with the nanoMOFs in an aqueous medium. Moreover, the anticancer drug doxorubicin (DOX) was successfully entrapped in the core-shell nanoMOFs with loadings up to 41 wt%. High resolution STEM (HR-STEM) showed that the organized crystalline structures were preserved. Remarkably, at the highest loadings, DOX was poorly released out of the nanoMOFs at pH 7.4 (<2% in 2 days). In contrast, around 80% of DOX was released out at pH 4.5 of artificial lysosomal fluid in 24 h. Confocal microscopy investigations showed that the DOX-loaded nanoMOFs penetrated inside Hela cancer cell together with their PEG shells. There, they released the DOX cargo which further diffused inside the nucleus to eradicate the cancer cells.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Preparações Farmacêuticas , Doxorrubicina , Porosidade
4.
RSC Adv ; 11(48): 30088-30092, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35493990

RESUMO

Six-membered-diaza ring of cinnoline has been fused on naphthalimide dye to give a donor-acceptor system called CinNapht. This red shifted fluorophore, that can be synthesised in gram scale, exhibits a large Stoke shift and a fluorescence quantum yield up to 0.33. It is also characterized by a strong solvatochromic effect from green to red emission as well and can be used for bio-imaging.

5.
Nanotechnol Sci Appl ; 13: 61-76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848371

RESUMO

PURPOSE: Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants. The waste of time, loss of material and potential environmental hazards are major limitations. MATERIALS AND METHODS: This work proposes a simple, fast and green strategy to synthesize small, non-toxic and stable NPs in water with a 100% production rate. Ionizing radiation is used to simultaneously synthesize and sterilize the containing NPs solutions. The synthesis of platinum nanoparticles (Pt NPs) coated with biocompatible poly(ethylene glycol) ligands (PEG) is presented as proof of concept. The physicochemical properties of NPs were studied by complementary specialized techniques. Their toxicity and radio-enhancing properties were evaluated in a cancerous in vitro model. Using plasmid nanoprobes, we investigated the elementary mechanisms underpinning radio-enhancement. RESULTS AND DISCUSSION: Pt NPs showed nearly spherical-like shapes and an average hydrodynamic diameter of 9 nm. NPs are zero-valent platinum successfully coated with PEG. They were found non-toxic and have the singular property of amplifying cell killing induced by γ-rays (14%) and even more, the effects of carbon ions (44%) used in particle therapy. They induce nanosized-molecular damage, which is a major finding to potentially implement this protocol in treatment planning simulations. CONCLUSION: This new eco-friendly, fast and simple proposed method opens a new era of engineering water-soluble biocompatible NPs and boosts the development of NP-aided radiation therapies.

6.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120829

RESUMO

Nanomedicine has stepped into the spotlight of radiation therapy over the last two decades. Nanoparticles (NPs), especially metallic NPs, can potentiate radiotherapy by specific accumulation into tumors, thus enhancing the efficacy while alleviating the toxicity of radiotherapy. Water radiolysis is a simple, fast and environmentally-friendly method to prepare highly controllable metallic nanoparticles in large scale. In this study, we used this method to prepare biocompatible PEGylated (with Poly(Ethylene Glycol) diamine) platinum nanoflowers (Pt NFs). These nanoagents provide unique surface chemistry, which allows functionalization with various molecules such as fluorescent markers, drugs or radionuclides. The Pt NFs were produced with a controlled aggregation of small Pt subunits through a combination of grafted polymers and radiation-induced polymer cross-linking. Confocal microscopy and fluorescence lifetime imaging microscopy revealed that Pt NFs were localized in the cytoplasm of cervical cancer cells (HeLa) but not in the nucleus. Clonogenic assays revealed that Pt NFs amplify the gamma rays induced killing of HeLa cells with a sensitizing enhancement ratio (SER) of 23%, thus making them promising candidates for future cancer radiation therapy. Furthermore, the efficiency of Pt NFs to induce nanoscopic biomolecular damage by interacting with gamma rays, was evaluated using plasmids as molecular probe. These findings show that the Pt NFs are efficient nano-radio-enhancers. Finally, these NFs could be used to improve not only the performances of radiation therapy treatments but also drug delivery and/or diagnosis when functionalized with various molecules.


Assuntos
Nanopartículas Metálicas/química , Neoplasias/radioterapia , Platina/química , Radiossensibilizantes/farmacologia , Morte Celular , Citoplasma/metabolismo , Células HeLa , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química , Radiossensibilizantes/química , Radiossensibilizantes/toxicidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA