Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38790896

RESUMO

Cancer treatments are advancing to harness the body's immune system against tumours, aiming for lasting effects. This progress involves combining potent chemotherapy drugs with immunogens to kill cancer cells and trigger lasting immunity. Developing new prodrugs that integrate both chemotherapy and immune-boosting elements could significantly improve anticancer outcomes by activating multiple mechanisms to kill cancer cells. While bacterial polysaccharides are typically not used in therapy due to their immune-stimulating properties, we propose a safe application of an extremophilic bacterial polysaccharide, Mauran (MR), modified with the anticancer drug 5-fluorouracil (5FU) to create a novel prodrug. This obtained prodrug, chloracetyl-MR-5FU, is specifically targeted using gold nanocages to CD133+ glioma cells. Test results have shown a high encapsulation efficiency of the drug during the polysaccharide modification process; its anticancer activity was demonstrated in vitro and the release of the prodrug was demonstrated in ex vivo studies.

2.
Gels ; 9(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36826275

RESUMO

Synthetic hydrogels provide a promising platform to produce neural tissue analogs with improved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaffold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were synthesized and characterized. The contribution of each component to viscoelastic and hydration behaviors and porous structure was identified, and concentration relationships for these properties were revealed. The rheological properties of the materials corresponded to those of neural tissues and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold for neural tissue repair with advantages over their hydrogel counterparts.

3.
RSC Adv ; 13(3): 1933-1934, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712630

RESUMO

Professor Hélder A. Santos and Dr Irina N. Savina introduce the RSC Advances themed collection on Nanomaterials in drug delivery.

4.
RSC Adv ; 12(48): 31338-31351, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349036

RESUMO

The persistence of harmful cyanobacterial algal blooms in aquatic ecosystems leads to health damage for various life forms. In this study, a photocatalyst active in the visible light range was prepared by combining BiVO4 with hydrogen peroxide modified titanium dioxide (BiVO4@HMT; for short), using an impregnation method. The catalyst was used to photocatalytically inhibit the growth of cyanobacteria collected from a bloom site. To infer the optimum pH for cyanobacterial growth, the effect of pH was studied. The growth of cyanobacteria was favoured in an alkaline environment at pH values in the range of 8-9.5 when analysed on the 20th day of incubation. Structural and chemical analysis of pristine and composite nano-powders was performed using XRD, SEM, TEM and XPS, confirming the heterojunction formation, while optical and band gap analysis revealed increased visible light absorption and reduced band gap of the composite. A small strawberry seed-like assembly of BiVO4 particles increased the light absorption in the 15%BiVO4@HMT composite and increased the inhibition efficiency up to 2.56 times compared to pristine HMT at an exposure time of 6 h and cell concentration at 0.1 g L-1 with an optimum catalyst dose of 1 g L-1. The amount of chlorophyll 'a' decreased due to the generation of catalytically reactive species, especially holes (h+), which caused oxidative damage to the cell wall, cell membrane and antioxidants in algal cells. This study reports that visible light active nanocatalysts can be used as a promising method for reducing algal blooms in water bodies.

5.
Gels ; 8(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35200498

RESUMO

Divalent trace metals (TM), especially copper (Cu), cobalt (Co) and zinc (Zn), are recognized as essential microelements for tissue homeostasis and regeneration. To achieve a balance between therapeutic activity and safety of administered TMs, effective gel formulations of TMs with elucidated regenerative mechanisms are required. We studied in vitro and in vivo effects of biodegradable macroporous cryogels doped with Cu, Co or Zn in a controllable manner. The extracellular ROS generation by metal dopants was assessed and compared with the intracellular effect of soluble TMs. The stimulating ability of TMs in the cryogels for cell proliferation, differentiation and cytokine/growth factor biosynthesis was characterized using HSF and HUVEC primary human cells. Multiple responses of host tissues to the TM-doped cryogels upon subcutaneous implantation were characterized taking into account the rate of biodegradation, production of HIF-1α/matrix metalloproteinases and the appearance of immune cells. Cu and Zn dopants did not disturb the intact skin organization while inducing specific stimulating effects on different skin structures, including vasculature, whereas Co dopant caused a significant reorganization of skin layers, the appearance of multinucleated giant cells, along with intense angiogenesis in the dermis. The results specify and compare the prooxidant and regenerative potential of Cu, Co and Zn-doped biodegradable cryogels and are of particular interest for the development of advanced bioinductive hydrogel materials for controlling angiogenesis and soft tissue growth.

6.
Gels ; 7(3)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203439

RESUMO

Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.

7.
Mater Sci Eng C Mater Biol Appl ; 123: 111983, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812611

RESUMO

Bioartificial Liver (BAL) devices are extracorporeal systems designed to support or recover hepatic function in patients with liver failure. The design of an effective BAL remains an open challenge since it requires a complex co-optimisation of cell colonisation, biomaterial scaffold and BAL fluid dynamics. Building on previous evidence of suitability as a blood perfusion device for detoxification, the current study investigated the use of RGD-containing p(HEMA)-alginate cryogels as BAL scaffolds. Cryogels were modified with alginate to reduce protein fouling and functionalised with an RGD-containing peptide to increase hepatocyte adhesion. A novel approach for characterisation of the internal flow through the porous matrix was developed by employing Particle Image Velocimetry (PIV) to visualise flow inside cryogels. Based on PIV results, which showed the laminar nature of flow inside cryogel pores, a multi-layered bioreactor composed of spaced cryogel discs was designed to improve blood/hepatocyte mass exchange. The stacked bioreactor showed a significantly higher production of albumin and urea compared to the column version, with improved cell colonisation and proliferation over time. The cell-free cryogel-based device was tested for safety in a bile-duct ligation model of liver cirrhosis. Thus, a stacked bioreactor prototype was developed based on a surface-engineered cryogel design with optimised fluid dynamics for BAL use.


Assuntos
Fígado Artificial , Bioengenharia , Criogéis , Humanos , Hidrodinâmica , Reologia
8.
Mater Sci Eng C Mater Biol Appl ; 121: 111859, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579491

RESUMO

In this study, we developed a method to prepare inorganic nanoparticles in situ on the surface of cationized cellulose using a rapid microwave-assisted synthesis. Selenium nanoparticles (SeNPs) were employed as a novel type of antimicrobial agent and, using the same method, silver nanoparticles (AgNPs) were also prepared. The results demonstrated that both SeNPs and AgNPs of about 100 nm in size were generated on the cationized cellulose fabrics. The antibacterial tests revealed that the presence of SeNPs clearly improved the antibacterial performance of cationized cellulose in a similar way as AgNPs. The functionalised fabrics demonstrated strong antibacterial activity when assessed using the challenge test method, even after repeated washing. Microscopic investigations revealed that the bacterial cells were visually damaged through contact with the functionalised fabrics. Furthermore, the functionalised fabrics showed low cytotoxicity towards human cells when tested in vitro using an indirect contact method. In conclusion, this study provides a new approach to prepare cationic cellulose fabrics functionalised with Se or Ag nanoparticles, which exhibit excellent antimicrobial performance, low cytotoxicity and good laundry durability. We have demonstrated that SeNPs can be a good alternative to AgNPs and the functionalised fabrics have great potential to serve as an anti-infective material.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selênio , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Celulose , Humanos , Testes de Sensibilidade Microbiana , Prata
9.
Molecules ; 26(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396955

RESUMO

A mesoporous support based on silica and zirconia (ZS) was used to prepare monometallic 1 wt% Pd/ZS, 10 wt% Fe/ZS, and bimetallic FePd/ZS catalysts. The catalysts were characterized by TPR-H2, XRD, SEM-EDS, TEM, AAS, and DRIFT spectroscopy of adsorbed CO after H2 reduction in situ and tested in hydrodechlorination of environmental pollutant 4-chlorophelol in aqueous solution at 30 °C. The bimetallic catalyst demonstrated an excellent activity, selectivity to phenol and stability in 10 consecutive runs. FePd/ZS has exceptional reducibility due to the high dispersion of palladium and strong interaction between FeOx and palladium, confirmed by TPR-H2, DRIFT spectroscopy, XRD, and TEM. Its reduction occurs during short-time treatment with hydrogen in an aqueous solution at RT. The Pd/ZS was more resistant to reduction but can be activated by aqueous phenol solution and H2. The study by DRIFT spectroscopy of CO adsorbed on Pd/ZS reduced in harsh (H2, 330 °C), medium (H2, 200 °C) and mild conditions (H2 + aqueous solution of phenol) helped to identify the reasons of the reducing action of phenol solution. It was found that phenol provided fast transformation of Pd+ to Pd0. Pd/ZS also can serve as an active and stable catalyst for 4-PhCl transformation to phenol after proper reduction.


Assuntos
Cloro/química , Clorofenóis/química , Ferro/química , Paládio/química , Dióxido de Silício/química , Eliminação de Resíduos Líquidos/métodos , Zircônio/química , Adsorção , Catálise , Hidrogênio , Microscopia Eletrônica de Varredura , Nitrogênio/química , Fenol/química , Porosidade , Temperatura , Purificação da Água
10.
J Hazard Mater ; 381: 120996, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445473

RESUMO

Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.


Assuntos
Arsênio/química , Criogéis/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Sobrevivência Celular/efeitos dos fármacos , Criogéis/toxicidade , Compostos Férricos/toxicidade , Células Hep G2 , Humanos
11.
Mater Sci Eng C Mater Biol Appl ; 103: 109759, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349449

RESUMO

Transition metals (TM) are essential microelements with various biological functions demanded in tissue regeneration applications. Little is known about therapeutic potential of TM within soft hydrogel biomaterials. The soluble divalent TM, such as Zn, Cu, Mn and Co, were stably incorporated into gelatin network during cryogelation. TM content in the resultant cryogels varied from 0.1 × 103 to 11.8 × 103 ppm, depending on the TM type and concentration in the reaction solution. Zn component was uniformly complexed with the gelatin scaffold according to elemental imaging, increasing the swelling of polymer walls and the G'/G″ values and also decreasing the size of cryogel macro-pores. Zn-doped cryogels supported migration of human skin fibroblasts (HSF); only upper Zn content of 11.8 × 103 ppm in the scaffold caused c.a. 50% inhibition of cell growth. Zn ions solubilized in culture medium were more active towards HSF (IC50 ≈ 0.3 mM). Treatment of splinted full-skin excisional wounds in rats with the Zn-doped and non-doped cryogels showed that Zn considerably promoted passing inflammatory/proliferation phases of healing process, inducing more intense dermis formation and structuration. The results show the feasibility of development of cryogel based formulations with different TM and support high phase-specific ability of the Zn-gelatin cryogels to repair acute wounds.


Assuntos
Criogéis/química , Criogéis/farmacologia , Metais/química , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Gelatina/química , Humanos , Masculino , Teste de Materiais , Microscopia Eletrônica de Varredura , Ratos Wistar , Reologia , Viscosidade , Zinco/química
12.
Water Res ; 153: 324-334, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30739074

RESUMO

The aim of this study was to develop and test a non-diffusion limited, high cell density bioreactor for biodegradation of various phenol derivatives. The bioreactor was obtained using a straightforward one-step preparation method using cryostructuration and direct cross-linking of bacteria into a 3D structured (sponge-like) macroporous cryogel composite material consisting of 11.6% (by mass) cells and 1.2-1.7% polymer, with approximately 87% water (in the material pores). The macroporous cryogel composite material, composed of live bacteria, has pore sizes in the range of 20-150 µm (confirmed by SEM and Laser Scanning Confocal Microscopy). The enzymatic activity of bacteria within the cryogel structure and the effect of freezing on the viability of the cross-linked cells was estimated by MTT assay. Cryogels based on Pseudomonas mendocina, Rhodococcus koreensis and Acinetobacter radioresistens were exploited for the effective bioremediation of phenol and m-cresol, and to a lesser extent 2-chlorophenol and 4-chlorophenol, utilising these phenolic contaminants in water as their only source of carbon. For evaluation of treatment scalability the bioreactors were prepared in plastic "Kaldnes" carriers to improve their mechanical properties and allow application in batch or fluidised bed water treatment modes.


Assuntos
Criogéis , Purificação da Água , Biodegradação Ambiental , Reatores Biológicos , Fenol
13.
RSC Adv ; 8(54): 30813-30824, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35548719

RESUMO

Immobilisation of bacteria on or into a polymer support is a common method for the utilisation of bacteria as biocatalysts for many biotechnological, medical and environmental applications. The main challenge in this approach is the time taken for the formation of stable biofilms, and the typically low percentage of bacterial cells present on or in the polymer matrix. In this work we propose a novel method for producing a porous bacteria based structure with the properties of a sponge (bacterial sponge) that we then use as a bioreactor for water treatment. Cryogelation has been used as a tool to create macroporous (i.e. with pores in the range 10-100 µm), highly permeable systems with low diffusion constraints and high bacterial content (more than 98% to total material content). A novel crosslinking system was used to form stable bacterial sponges with a high percentage of live bacteria organized in a 3D porous structure. The bacterial sponge was produced in a one step process and can be made from one or several bacterial strains (in this case, two bacterial strains Pseudomonas mendocina and Rhodoccocus koreensis (and a mixture of both) were used). Reduction of the total polymer content to 2% makes the system more sustainable and environmentally friendly under disposal as it can be simply composted. The bacterial sponges have good mechanical stability and cell viability, which enables repeated use of the materials for phenol degradation for up to five weeks. The material can be stored and transported in cryogenic conditions (-80 °C) for prolonged periods of time, retaining its bioremediation activity following 4-6 weeks of frozen storage. The proposed method of producing bioreactors with a high number of live immobilised bacteria, low polymer content and controlled 3D structure is a promising tool for developing novel materials based on active bacterial cells for various environmental, biotechnological, biological and medical applications.

14.
Gels ; 3(4)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30920534

RESUMO

In this review, the importance of water in hydrogel (HG) properties and structure is analyzed. A variety of methods such as ¹H NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry), XRD (X-ray powder diffraction), dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform. According to thermodynamic features of water in HG, some of it is non-freezing and strongly bound, another fraction is freezing and weakly bound, and the third fraction is non-bound, free water freezing at 0 °C. According to structural features of water in HG, it can be divided into two fractions with strongly associated and weakly associated waters. The properties of the water in HG depend also on the amounts and types of solutes, pH, salinity, structural features of HG functionalities.

15.
J Drug Target ; 25(1): 17-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126681

RESUMO

Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Animais , Transporte Biológico , Dendrímeros/química , Dendrímeros/farmacocinética , Emulsões , Géis/química , Géis/farmacocinética , Humanos , Lipossomos , Micelas , Permeabilidade , Preparações Farmacêuticas/metabolismo
16.
J Environ Manage ; 182: 141-148, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472050

RESUMO

Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel. The bead-embedded monolithic composite filter retains the bulk of the high adsorptive capacity of the carbon microbeads while improving pore diffusion rates of organic pollutants. Water spiked with organic contaminants, both at environmentally relevant concentrations and at high levels of contamination, was used to determine the purification limits of the filter. Flow through tests using water spiked with the pesticides atrazine (32 mg/L) and malathion (16 mg/L) indicated maximum adsorptive capacities of 641 and 591 mg pollutant/g carbon, respectively. Over 400 bed volumes of water contaminated with 32 mg atrazine/L, and over 27,400 bed volumes of water contaminated with 2 µg atrazine/L, were treated before pesticide guideline values of 0.1 µg/L were exceeded. High adsorptive capacity was maintained when using water with high total organic carbon (TOC) levels and high salinity. The toxicity of water filtrates was tested in vitro with human epithelial cells with no evidence of cytotoxicity after initial washing.


Assuntos
Compostos Orgânicos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carbono/química , Criogéis/química , Filtração/instrumentação , Filtração/normas , Humanos
17.
Sci Rep ; 6: 21154, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883390

RESUMO

The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 µm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

18.
Colloids Surf B Biointerfaces ; 140: 196-203, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764102

RESUMO

In this study the effect of oxidative modification on micellar and drug delivery properties of copolymers of ethylene oxide (EO) and propylene oxide (PO) was investigated. Carboxylated trifunctional copolymers were synthesized in the reaction with chromium(VI) oxide. We found that carboxylation significantly improved the uniformity and stability of polymeric micelles by inhibiting the microphase transition. The cytotoxicity of copolymers was studied in relation to their aggregative state on two cell types (cancer line vs. primary fibroblasts). The accumulation of rhodamine 123 in neuroblastoma SH-SY5Y cells was dramatically increased in the presence of the oxidized block copolymer with the number of PO and EO units of 83.5 and 24.2, respectively. The copolymer was also tested as an enhancer for topical drug delivery to the spinal cord when applied subdurally. The oxidized copolymer facilitated the penetration of rhodamine 123 across spinal cord tissues and increased its intraspinal accumulation. These results show the potential of using oxidized EO/PO based polymers for non-invasive delivery of protective drugs after spinal cord injury.


Assuntos
Compostos de Epóxi/química , Óxido de Etileno/química , Rodamina 123/química , Medula Espinal/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cromo/química , Compostos de Cromo/química , Sistemas de Liberação de Medicamentos/métodos , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Microscopia Confocal , Neuroblastoma/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ratos Wistar , Rodamina 123/administração & dosagem , Rodamina 123/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier , Medula Espinal/química
19.
Biomaterials ; 50: 140-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736504

RESUMO

Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/isolamento & purificação , Toxinas Bacterianas/isolamento & purificação , Criogéis , Proteínas Imobilizadas/metabolismo , Proteína Estafilocócica A/metabolismo , Resinas Acrílicas/química , Adsorção , Animais , Soluções Tampão , Morte Celular , Linhagem Celular , Sobrevivência Celular , Cricetinae , Criogéis/metabolismo , Humanos , Fenômenos Mecânicos , Microscopia Confocal , Porosidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
20.
Acta Biomater ; 10(7): 3156-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704695

RESUMO

A sheet gelatin scaffold with attached silicone pseudoepidermal layer for wound repair purposes was produced by a cryogelation technique. The resulting scaffold possessed an interconnected macroporous structure with a pore size distribution of 131 ± 17 µm at one surface decreasing to 30 ± 8 µm at the attached silicone surface. The dynamic storage modulus (G') and mechanical stability were comparable to the clinical gold standard dermal regeneration template, Integra®. The scaffolds were seeded in vitro with human primary dermal fibroblasts. The gelatin based material was not only non-cytotoxic, but over a 28 day culture period also demonstrated advantages in cell migration, proliferation and distribution within the matrix when compared with Integra®. When seeded with human keratinocytes, the neoepidermal layer that formed over the cryogel scaffold appeared to be more advanced and mature when compared with that formed over Integra®. The in vivo application of the gelatin scaffold in a porcine wound healing model showed that the material supports wound healing by allowing host cellular infiltration, biointegration and remodelling. The results of our in vitro and in vivo studies suggest that the gelatin based scaffold produced by a cryogelation technique is a promising material for dermal substitution, wound healing and other potential biomedical applications.


Assuntos
Criogéis , Gelatina , Pele Artificial , Alicerces Teciduais , Cicatrização , Humanos , Técnicas In Vitro , Microscopia Confocal , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA