Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 19(9): 1898-1908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546661

RESUMO

Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.


Assuntos
Glucocorticoides/uso terapêutico , Linfoma/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Glucocorticoides/farmacologia , Humanos , Camundongos
2.
Breast Cancer (Auckl) ; 14: 1178223420974667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424228

RESUMO

Glucocorticoids (GCs) are stress hormones that play multiple roles in the regulation of cancer cell differentiation, apoptosis, and proliferation. Some types of cancers, such as hematological malignancies, can be effectively treated by GCs, whereas the responses of epithelial cancers to GC treatment vary, even within cancer subtypes. In particular, GCs are frequently used as supporting treatment of breast cancer (BC) to protect against chemotherapy side effects. In the therapy of nonaggressive luminal subtypes of BC, GCs can have auxiliary antitumor effects due to their cytotoxic actions on cancer cells. However, GCs can promote BC progression, colonization of distant metastatic sites, and metastasis. The effects of GCs on cell proliferation vary with BC subtype and its molecular profile and are realized via the activation of glucocorticoid receptor (GR), a well-known transcriptional factor involved in the regulation of the expression of multiple genes, cell-cell adhesion, and cell migration and polarity. This review focuses on the roles of GC signaling in the adhesion, migration, and metastasis of BC cells. We discuss the molecular mechanisms of GC actions that lead to BC metastasis and propose alternative pharmacological uses of GCs for BC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA