Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35804958

RESUMO

The management of prostate cancer recurrence following external beam radiotherapy is not defined yet. Stereotaxic body reirradiation therapy showed encouraging results for local and biochemical control. From April 2017 to December 2020, 29 patients with prostate cancer recurrence were collected, joining the retrospective studies CyPro (prot. 46/19 OSS) and CLARO (Prot. 19/20 OSS) trials. Patients received Cyberknife® treatment (17 pts) or alternatively VMAT (Volumetric Modulated Arc Technique) therapy by IGRT (Image-Guided Radiation Therapy)/Clarity® (12 pts). By comparing the reirradiation of two groups, urinary (GU), rectal (GI) toxicities, and biochemical control were investigated. Further, the two techniques were dosimetrically compared by rival plans. The VMAT-IGRT Clarity® treatments were replanned with an optimized template developed for prostate VMAT-SBRT in FFF mode keeping the same dose and fractionation scheduled for Cyberknife Group (30 Gy in 5 fx, at 80% isodose). In the CK group, 23% of patients experienced grade 2 acute GU, while 6% grade 2 acute GI. In the VMAT-Clarity® group, acute GU toxicity was recorded in 17%, while for 8% grade 2 late toxicity was recorded. The dosimetric analysis shows that the VMAT-FFF allows to deliver a biological equivalent dose to CK, with the advantage of reducing the likelihood of toxicities arising.

2.
Life (Basel) ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629378

RESUMO

In recent years, stereotactic body radiation therapy (SBRT) has gained popularity among clinical methods for the treatment of medium and low risk prostate cancer (PCa), mainly as an alternative to surgery. The hypo-fractionated regimen allows the administration of high doses of radiation in a small number of fractions; such a fractionation is possible by exploiting the different intrinsic prostate radiosensitivity compared with the surrounding healthy tissues. In addition, SBRT treatment guaranteed a better quality of life compared with surgery, avoiding risks, aftermaths, and possible complications. At present, most stereotactic prostate treatments are performed with the CyberKnife (CK) system, which is an accelerator exclusively dedicated for stereotaxis and it is not widely spread in every radiotherapy centre like a classic linear accelerator (LINAC). To be fair, a stereotactic treatment is achievable also by using a LINAC through Volumetric Modulated Arc Therapy (VMAT), but some precautions must be taken. The aim of this work is to carry out a dosimetric comparison between these two methodologies. In order to pursue such a goal, two groups of patients were selected at Instituto Nazionale Tumori-IRCCS Fondazione G. Pascale: the first group consisting of ten patients previously treated with a SBRT performed with CK; the second one was composed of ten patients who received a hypo-fractionated VMAT treatment and replanned in VMAT-SBRT flattening filter free mode (FFF). The two SBRT techniques were rescaled at the same target coverage and compared by normal tissue sparing, dose distribution parameters and delivery time. All organs at risk (OAR) constraints were achieved by both platforms. CK exhibits higher performances in terms of dose delivery; nevertheless, the general satisfying dosimetric results and the significantly shorter delivery time make VMAT-FFF an attractive and reasonable alternative SBRT technique for the treatment of localized prostate cancer.

3.
Life (Basel) ; 11(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668261

RESUMO

Radon is a major source of ionizing radiation exposure for the general population. It is known that exposure to radon is a risk factor for the onset of lung cancer. In this study, the results of a radon survey conducted in all districts of a Public Healthcare in Italy, are reported. Measurements of indoor radon were performed using nuclear track detectors, CR-39. The entire survey was conducted according to a well-established quality assurance program. The annual effective dose and excess lifetime cancer risk were also calculated. Results show that the radon concentrations varied from 7 ± 1 Bq/m3 and 5148 ± 772 Bq/m3, with a geometric mean of 67 Bq/m3 and geometric standard deviation of 2.5. The annual effective dose to workers was found to be 1.6 mSv/y and comparable with the worldwide average. In Italy, following the transposition of the European Directive 59/2013, great attention was paid to the radon risk in workplaces. The interest of the workers of the monitored sites was very high and this, certainly contributed to the high return rate of the detectors after exposure and therefore, to the presence of few missing data. Although it was not possible to study the factors affecting radon concentrations, certainly the main advantage of this study is that it was the first in which an entire public health company was monitored in regards to all the premises on the underground and ground floor.

4.
PLoS One ; 10(10): e0139287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427065

RESUMO

BACKGROUND: Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. METHODS: LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. RESULTS: The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). CONCLUSIONS: This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.


Assuntos
Braquiterapia/métodos , Elétrons , Fluoretos/química , Compostos de Lítio/química , Magnésio/química , Controle de Qualidade , Dosimetria Termoluminescente/métodos , Titânio/química , Humanos , Método de Monte Carlo , Dosimetria Termoluminescente/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA