Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Microb Physiol ; 84: 51-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38821634

RESUMO

Formic acid (HCOOH) and dihydrogen (H2) are characteristic products of enterobacterial mixed-acid fermentation, with H2 generation increasing in conjunction with a decrease in extracellular pH. Formate and acetyl-CoA are generated by radical-based and coenzyme A-dependent cleavage of pyruvate catalysed by pyruvate formate-lyase (PflB). Formate is also the source of H2, which is generated along with carbon dioxide through the action of the membrane-associated, cytoplasmically-oriented formate hydrogenlyase (FHL-1) complex. Synthesis of the FHL-1 complex is completely dependent on the cytoplasmic accumulation of formate. Consequently, formate determines its own disproportionation into H2 and CO2 by the FHL-1 complex. Cytoplasmic formate levels are controlled by FocA, a pentameric channel that translocates formic acid/formate bidirectionally between the cytoplasm and periplasm. Each protomer of FocA has a narrow hydrophobic pore through which neutral formic acid can pass. Two conserved amino acid residues, a histidine and a threonine, at the center of the pore control directionality of translocation. The histidine residue is essential for pH-dependent influx of formic acid. Studies with the formate analogue hypophosphite and amino acid variants of FocA suggest that the mechanisms of formic acid efflux and influx differ. Indeed, current data suggest, depending on extracellular formate levels, two separate uptake mechanisms exist, both likely contributing to maintain pH homeostasis. Bidirectional formate/formic acid translocation is dependent on PflB and influx requires an active FHL-1 complex. This review describes the coupling of formate and H2 production in enterobacteria.


Assuntos
Enterobacteriaceae , Fermentação , Formiatos , Hidrogênio , Formiatos/metabolismo , Hidrogênio/metabolismo , Enterobacteriaceae/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Formiato Desidrogenases , Hidrogenase , Complexos Multienzimáticos
2.
Sci Rep ; 14(1): 3026, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321125

RESUMO

[NiFe]-hydrogenases have a bimetallic NiFe(CN)2CO cofactor in their large, catalytic subunit. The 136 Da Fe(CN)2CO group of this cofactor is preassembled on a distinct HypC-HypD scaffold complex, but the intracellular source of the iron ion is unresolved. Native mass spectrometric analysis of HypCD complexes defined the [4Fe-4S] cluster associated with HypD and identified + 26 to 28 Da and + 136 Da modifications specifically associated with HypC. A HypCC2A variant without the essential conserved N-terminal cysteine residue dissociated from its complex with native HypD lacked all modifications. Native HypC dissociated from HypCD complexes isolated from Escherichia coli strains deleted for the iscS or iscU genes, encoding core components of the Isc iron-sulfur cluster biogenesis machinery, specifically lacked the + 136 Da modification, but this was retained on HypC from suf mutants. The presence or absence of the + 136 Da modification on the HypCD complex correlated with the hydrogenase enzyme activity profiles of the respective mutant strains. Notably, the [4Fe-4S] cluster on HypD was identified in all HypCD complexes analyzed. These results suggest that the iron of the Fe(CN)2CO group on HypCD derives from the Isc machinery, while either the Isc or the Suf machinery can deliver the [4Fe-4S] cluster to HypD.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Proteínas Ferro-Enxofre , Escherichia coli/genética , Ferro/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrogenase/metabolismo , Domínio Catalítico , Cisteína/química
3.
Arch Biochem Biophys ; 752: 109877, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159898

RESUMO

Pentameric FocA permeates either formate or formic acid bidirectionally across the cytoplasmic membrane of anaerobically growing Escherichia coli. Each protomer of FocA has its own hydrophobic pore, but it is unclear whether formate or neutral formic acid is translocated in vivo. Here, we measured total and dicyclohexylcarbodiimide (DCCD)-inhibited proton flux out of resting, fermentatively grown, stationary-phase E. coli cells in dependence on FocA. Using a wild-type strain synthesizing native FocA, it was shown that using glucose as a source of formate, DCCD-independent proton efflux was ∼2.5 mmol min-1, while a mutant lacking FocA showed only DCCD-inhibited, FOF1-ATPase-dependent proton-efflux. A strain synthesizing a chromosomally-encoded FocAH209N variant that functions exclusively to translocate formic acid out of the cell, showed a further 20 % increase in FocA-dependent proton efflux relative to the parental strain. Cells synthesizing a FocAT91A variant, which is unable to translocate formic acid out of the cell, showed only DCCD-inhibited proton efflux. When exogenous formate was added, formic acid uptake was shown to be both FocA- and proton motive force-dependent. By measuring rates of H2 production, potassium ion flux and ATPase activity, these data support a role for coupling between formate, proton and K+ ion translocation in maintaining pH and ion gradient homeostasis during fermentation. FocA thus plays a key role in maintaining this homeostatic balance in fermenting cells by bidirectionally translocating formic acid.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Escherichia coli/metabolismo , Prótons , Dicicloexilcarbodi-Imida/farmacologia , Formiatos , Adenosina Trifosfatases , Concentração de Íons de Hidrogênio
4.
Mol Microbiol ; 120(1): 54-59, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36855806

RESUMO

A living microbial cell represents a system of high complexity, integration, and extreme order. All processes within that cell interconvert free energy through a multitude of interconnected metabolic reactions that help to maintain the cell in a state of low entropy, which is a characteristic of all living systems. The study of macromolecular interactions outside this cellular environment yields valuable information about the molecular function of macromolecules but represents a system in comparative disorder. Consequently, care must always be taken in interpreting the information gleaned from such studies and must be compared with how the same macromolecules function in vivo, otherwise, discrepancies can arise. The importance of combining reductionist approaches with the study of whole-cell microbial physiology is discussed regarding the long-term aim of understanding how a cell functions in its entirety. This can only be achieved by the continued development of high-resolution structural and multi-omic technologies. It is only by studying the whole cell that we can ever hope to understand how living systems function.

5.
FEBS Open Bio ; 13(2): 341-351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36602404

RESUMO

Four Hyp proteins build a scaffold complex upon which the Fe(CN)2 CO group of the [NiFe]-cofactor of hydrogenases (Hyd) is made. Two of these Hyp proteins, the redox-active, [4Fe-4S]-containing HypD protein and the HypC chaperone, form the basis of this scaffold complex. Two different scaffold complexes exist in Escherichia coli, HypCD, and the paralogous HybG-HypD complex, both of which exhibit ATPase activity. Apart from a Rossmann fold, there is no obvious ATP-binding site in HypD. The aim of this study, therefore, was to identify amino acid motifs in HypD that are required for the ATPase activity of the HybG-HypD scaffold complex. Amino acid-exchange variants in three conserved motifs within HypD were generated. Variants in which individual cysteine residues coordinating the iron-sulfur ([4Fe-4S]) cluster were exchanged abolished Hyd enzyme activity and reduced ATPase activity but also destabilized the complex. Two conserved cysteine residues, C69 and C72, form part of HypD's Rossmann fold and play a role in HypD's thiol-disulfide exchange activity. Substitution of these two residues individually with alanine also abolished hydrogenase activity and strongly reduced ATPase activity, particularly the C72A exchange. Residues in a further conserved GFETT motif were exchanged, but neither hydrogenase enzyme activity nor ATPase activity of the isolated HybG-HypD complexes was significantly affected. Together, our findings identify a strong correlation between the redox activity of HypD, ATPase activity, and the ability of the complex to mature Hyd enzymes. These results further highlight the important role of thiol residues in the HybG-HypD scaffold complex during [NiFe]-cofactor biosynthesis.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Hidrogenase/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cisteína/metabolismo , Oxirredução , Adenosina Trifosfatases/metabolismo , Chaperonas Moleculares/metabolismo
6.
Microbiology (Reading) ; 168(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36197793

RESUMO

During enterobacterial mixed-acid fermentation, formate is generated from pyruvate by the glycyl-radical enzyme pyruvate formate-lyase (PflB). In Escherichia coli, especially at low pH, formate is then disproportionated to CO2 and H2 by the cytoplasmically oriented, membrane-associated formate hydrogenlyase (FHL) complex. If electron acceptors are available, however, formate is oxidized by periplasmically oriented, respiratory formate dehydrogenases. Formate translocation across the cytoplasmic membrane is controlled by the formate channel, FocA, a member of the formate-nitrite transporter (FNT) family of homopentameric anion channels. This review highlights recent advances in our understanding of how FocA helps to maintain intracellular formate and pH homeostasis during fermentation. Efflux and influx of formate/formic acid are distinct processes performed by FocA and both are controlled through protein interaction between FocA's N-terminal domain with PflB. Formic acid efflux by FocA helps to maintain cytoplasmic pH balance during exponential-phase growth. Uptake of formate against the electrochemical gradient (inside negative) is energetically and mechanistically challenging for a fermenting bacterium unless coupled with proton/cation symport. Translocation of formate/formic acid into the cytoplasm necessitates an active FHL complex, whose synthesis also depends on formate. Thus, FocA, FHL and PflB function together to govern formate homeostasis. We explain how FocA achieves efflux of formic acid and propose mechanisms for pH-dependent uptake of formate both with and without proton symport. We propose that FocA displays both channel- and transporter-like behaviour. Whether this translocation behaviour is shared by other members of the FNT family is also discussed.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Ânions/metabolismo , Dióxido de Carbono/metabolismo , Enterobacteriaceae/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Hidrogenase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nitritos/metabolismo , Prótons , Piruvatos/metabolismo
7.
Microbiologyopen ; 11(4): e1312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031960

RESUMO

The formate-specific anion channel FocA of Escherichia coli belongs to the superfamily of homopentameric formate-nitrite transporters (FNT). Minimally nine amino acid residues are conserved in the formate translocation pore of each protomer of the pentamer, including a histidine (H209) and a threonine (T91), both of which are crucial for bidirectional formate translocation through the pore. Information regarding in vivo functional or structural roles for the other seven conserved residues is limited, or nonexistent. Here, we conducted an amino acid-exchange analysis of these seven conserved residues. Using an established formate-responsive lacZ-based assay to monitor changes in intracellular formate levels and anaerobic growth rate due to the inhibitory formate analog hypophosphite, we identified five of the seven residues analyzed to be important for the structural integrity of the pentamer, in particular, two highly conserved asparagine residues, N213 and N262. The remaining two conserved residues, K156 and N172, were essential for formate/hypophosphite translocation. K156 is located on the periplasmic fringe of the pore and aids the attraction of formate to the channel. Here, we show that this residue is also important for formate efflux from the cytoplasm to the periplasm, suggesting a role in formate release from the pore. N172 could be replaced by alanine with retention of low-level bidirectional anion translocation function; however, exchange for threonine abolished anion translocation. N172 is, therefore, crucial for bidirectional formate translocation, possibly through its interaction with the conserved pore residue, T91.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Aminoácidos , Ânions , Proteínas de Escherichia coli/química , Formiatos , Proteínas de Membrana Transportadoras/química , Treonina
8.
Front Microbiol ; 13: 872581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422773

RESUMO

The biosynthesis of the NiFe(CN)2CO organometallic cofactor of [NiFe]-hydrogenase (Hyd) involves several discreet steps, including the synthesis of the Fe(CN)2CO group on a HypD-HypC scaffold complex. HypC has an additional function in transferring the Fe(CN)2CO group to the apo-precursor of the Hyd catalytic subunit. Bacteria that synthesize more than one Hyd enzyme often have additional HypC-type chaperones specific for each precursor. The specificity determinants of this large chaperone family are not understood. Escherichia coli synthesizes two HypC paralogs, HypC and HybG. HypC delivers the Fe(CN)2CO group to pre-HycE, the precursor of the H2-evolving Hyd-3 enzyme, while HybG transfers the group to the pre-HybC of the H2-oxidizing Hyd-2 enzyme. We could show that a conserved histidine residue around the amino acid position 50 in both HypC and HybG, when exchanged for an alanine, resulted in a severe reduction in the activity of its cognate Hyd enzyme. This reduction in enzyme activity proved to be due to the impaired ability of the chaperones to interact with HypD. Surprisingly, and only in the case of the HybG H52A variant, its co-synthesis with HypD improved its interaction with pre-HycE, resulting in the maturation of Hyd-3. This study demonstrates that the conserved histidine residue helps enhance the interaction of the chaperone with HypD, but additionally, and in E. coli only for HybG, acts as a determinant to prevent the inadvertent maturation of the wrong large-subunit precursor. This study identifies a new level of control exerted by a bacterium synthesizing multiple [NiFe]-Hyd to ensure the correct enzyme is matured only under the appropriate physiological conditions.

9.
J Bacteriol ; 204(5): e0007022, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35377165

RESUMO

During glucose fermentation, Escherichia coli and many other microorganisms employ the glycyl radical enzyme (GRE) pyruvate formate-lyase (PflB) to catalyze the coenzyme A-dependent cleavage of pyruvate to formate and acetyl-coenzyme A (CoA). Due to its extreme reactivity, the radical in PflB must be controlled carefully and, once generated, is particularly susceptible to dioxygen. Exposure to oxygen of the radical on glycine residue 734 of PflB results in cleavage of the polypeptide chain and consequent inactivation of the enzyme. Two decades ago, a small 14-kDa protein called YfiD (now called autonomous glycyl radical cofactor [GrcA]) was shown to be capable of restoring activity to O2-inactivated PflB in vitro; however, GrcA has never been shown to have this function in vivo. By constructing a strain with a chromosomally encoded PflB enzyme variant with a G734A residue exchange, we could show that cells retained near-wild type fermentative growth, as well as formate and H2 production; H2 is derived by enzymatic disproportionation of formate. Introducing a grcA deletion mutation into this strain completely prevented formate and H2 generation and reduced anaerobic growth. We could show that the conserved glycine at position 102 on GrcA was necessary for GrcA to restore PflB activity and that this recovered activity depended on the essential cysteine residues 418 and 419 in the active site of PflB. Together, our findings demonstrate that GrcA is capable of restoring in vivo activity to inactive full-length PflB and support a model whereby GrcA displaces the C-terminal glycyl radical domain to rescue the catalytic function of PflB. IMPORTANCE Many facultative anaerobic microorganisms use glycyl radical enzymes (GREs) to catalyze chemically challenging reactions under anaerobic conditions. Pyruvate formate-lyase (PflB) is a GRE that catalyzes cleavage of the carbon-carbon bond of pyruvate during glucose fermentation. The problem is that glycyl radicals are destroyed readily, especially by oxygen. To protect and restore activity to inactivated PflB, bacteria like Escherichia coli have a small autonomous glycyl radical cofactor protein called GrcA, which functions to rescue inactivated PflB. To date, this proposed function of GrcA has only been demonstrated in vitro. Our data reveal that GrcA rescues and restores enzyme activity to an inactive full-length form of PflB in vivo. These results have important implications for the evolution of radical-based enzyme mechanisms.


Assuntos
Acetiltransferases , Proteínas de Escherichia coli , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Formiatos/metabolismo , Glucose/metabolismo , Glicina/metabolismo , Oxigênio/metabolismo , Piruvatos/metabolismo
10.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377837

RESUMO

FocA translocates formate/formic acid bi-directionally across the cytoplasmic membrane when Escherichia coli grows by fermentation. It remains unclear, however, what physiological benefit is imparted by FocA, because formic acid (pKa=3.75) can diffuse passively across the membrane, especially at low pH. Here, we monitored changes in intra- and extracellular formate levels during batch-culture fermentation, comparing a parental E. coli K-12 strain with its isogenic focA mutant. Our results show that, regardless of the initial pH in the culture, FocA functions to maintain relatively constant intracellular formate levels during growth. Analysis of a strain synthesizing a FocAT91A variant with an exchange in a conserved threonine residue within the translocation pore revealed the strain accumulated formate intracellularly and imported formate poorly, but in a pH-dependent manner, which was different to uptake by native FocA. We conclude that FocA maintains formate homeostasis, using different mechanisms for efflux and uptake of the anion.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fermentação , Formiatos , Homeostase , Proteínas de Membrana Transportadoras/metabolismo
11.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333705

RESUMO

It is now 75 years since Marjory Stephenson became the second President of the Society for General Microbiology (SGM). Around the time of her death at the end of 1948 many articles appeared extolling Marjory Stephenson's contribution to the fields of Biochemistry and Microbiology. Not that much has been written about her since that time, which is unfortunate. Therefore, this brief review is intended as a form of redress and aims to highlight the role of this remarkable scientist in establishing the Society and in promoting Microbiology as a discipline. Notwithstanding the significance of these achievements, however, it is her overall impact on the field of 'Chemical Microbiology' and what she achieved through her research that are extraordinary, even by today's standards. Marjory Stephenson recognized that in order to understand a biological system, the 'whole' organism must be considered and this can only be achieved by adopting an interdisciplinary approach: inorganic and organic chemistry, biochemistry, genetics, metabolism and ultimately physiology. Her scientific ethos serves today as a beacon for how scientific research should be conducted, and what we as scientists can learn about how to inspire and mentor the next generation. It is impossible to overstate Marjory Stephenson's scientific legacy, or her overall contribution to Microbiology.

12.
Microbiology (Reading) ; 168(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35084298

RESUMO

During mixed-acid fermentation, Escherichia coli initially translocates formate out of the cell, but re-imports it at lower pH. This is performed by FocA, the archetype of the formate-nitrite transporter (FNT) family of pentameric anion channels. Each protomer of FocA has a hydrophobic pore through which formate/formic acid is bidirectionally translocated. It is not understood how the direction of formate/formic acid passage through FocA is controlled by pH. A conserved histidine residue (H209) is located within the translocation pore, suggesting that protonation/deprotonation might be linked to the direction of formate translocation. Using a formate-responsive lacZ-based reporter system we monitored changes in formate levels in vivo when H209 in FocA was exchanged for either of the non-protonatable amino acids asparagine or glutamine, which occur naturally in some FNTs. These FocA variants (with N or Q) functioned as highly efficient formate efflux channels and the bacteria could neither accumulate formate nor produce hydrogen gas. Therefore, the data in this study suggest that this central histidine residue within the FocA pore is required for pH-dependent formate uptake into E. coli cells. We also address why H209 is evolutionarily conserved and provide a physiological rationale for the natural occurrence of N/Q variants of FNT channels.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Formiatos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/metabolismo
13.
Sci Rep ; 11(1): 24362, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934150

RESUMO

[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN)2CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN)2CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN)2CO group. Using native mass spectrometry of an anaerobically isolated HybG-HypD complex we show that HybG carries the Fe(CN)2CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO2-related, covalent modifications that depended on the presence of the N-terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN)2CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN)2CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.


Assuntos
Monóxido de Carbono/metabolismo , Cianetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compostos Ferrosos/metabolismo , Hidrogenase/metabolismo , Chaperonas Moleculares/metabolismo , Monóxido de Carbono/química , Domínio Catalítico , Cianetos/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Compostos Ferrosos/química , Hidrogenase/química , Hidrogenase/genética , Espectrometria de Massas , Chaperonas Moleculares/genética , Proteínas/genética , Proteínas/metabolismo
14.
J Bacteriol ; 203(3)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199281

RESUMO

Although mechanistic understanding of calcium signaling in bacteria remains inchoate, current evidence clearly links Ca2+ signaling with membrane potential and mechanosensation. Adopting a radically new approach, Luder et al. scanned the Keio collection of Escherichia coli gene knockouts (R. Luder, G. N. Bruni, and J. M. Kralj, J Bacteriol 203:e00509-20, 2021, https://doi.org/10.1128/JB.00509-20) to identify mutations that cause changes in Ca2+ transients. They identify genes associating Ca2+ signaling with outer membrane biogenesis, proton motive force, and, surprisingly, long-term DNA damage. Their work has major implications for electrophysiological communication between bacteria and their environment.


Assuntos
Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transdução de Sinais/fisiologia , Archaea , Bactérias , Proteínas de Transporte de Cátions/metabolismo , Cátions , Dano ao DNA , Replicação do DNA , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação
15.
Microbiol Mol Biol Rev ; 84(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31996394

RESUMO

Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Animais , Bactérias/enzimologia , Fermentação , Trato Gastrointestinal/microbiologia , Genoma Bacteriano , Humanos , Oxirredução , Virulência
16.
Front Microbiol ; 10: 2223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611859

RESUMO

The active site of all [NiFe]-hydrogenases (Hyd) has a bimetallic NiFe(CN)2CO cofactor that requires the combined action of several maturation proteins for its biosynthesis and insertion into the precursor form of the large subunit of the enzyme. Cofactor insertion is an intricately controlled process, and the large subunit of almost all Hyd enzymes has a C-terminal oligopeptide extension that is endoproteolytically removed as the final maturation step. This extension might serve either as one of the recognition motifs for the endoprotease, as well as an interaction platform for the maturation proteins, or it could have a structural role to ensure the active site cavity remains open until the cofactor is inserted. To distinguish between these alternatives, we exchanged the complete C-terminal extension of the precursor of Escherichia coli hydrogenase 2 (Hyd-2) for the C-terminal extension of the Hyd-1 enzyme. Using in-gel activity staining, we demonstrate clearly that this large subunit precursor retains its specificity for the HybG maturation chaperone, as well as for the pro-HybC-specific endoprotease HybD, despite the C-terminal exchange. Bacterial two-hybrid studies confirmed interaction between HybD and the pro-HybC variant carrying the exchanged C-terminus. Limited proteolysis studies of purified precursor and mature HybC protein revealed that, in contrast to the precursor, the mature protein was protected against trypsin attack, signifying a major conformational change in the protein. Together, our results support a model whereby the function of the C-terminal extension during subunit maturation is structural.

17.
FEBS Open Bio ; 9(12): 2072-2079, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614069

RESUMO

HypD and HypC, or its paralogue HybG in Escherichia coli, form the core of the scaffold complex that synthesizes the Fe(CN)2 CO component of the bimetallic NiFe-cofactor of [NiFe]-hydrogenase. We show here that purified HypC-HypD and HybG-HypD complexes catalyse hydrolysis of ATP to ADP (kcat  â‰… 0.85·s-1 ); the ATPase activity of the individual proteins was between 5- and 10-fold lower than that of the complex. Pre-incubation of HypD with ATP was necessary to restore full activity upon addition of HybG. The conserved Cys41 residue on HypD was essential for full ATPase activity of the complex. Together, our data suggest that HypD undergoes ATP-dependent conformational activation to facilitate complex assembly in preparation for substrate reduction.


Assuntos
Proteínas de Escherichia coli/metabolismo , Hidrogenase/metabolismo , Proteínas/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Hidrogenase/fisiologia , Ferro/metabolismo , Níquel/metabolismo
18.
Environ Microbiol Rep ; 11(5): 645-650, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268622

RESUMO

Respiratory nitrate reductases (Nar) catalyse the reduction of nitrate to nitrite, coupling this process to energy conservation. The obligate aerobic actinobacterium Streptomyces coelicolor synthesizes three Nar enzymes that contribute to maintenance of a membrane potential when either the mycelium or the spores become hypoxic or anoxic. No growth occurs under such conditions but the bacterium survives the lack of O2 by remaining metabolically active; reducing nitrate is one means whereby this process is aided. Nar1 is exclusive to spores, Nar2 to vegetative mycelium and Nar3 to stationary-phase mycelium, each making a distinct contribution to energy conservation. While Nar2 and Nar3 appear to function like conventional menaquinol oxidases, unusually, Nar1 is completely dependent for its activity on a cytochrome bcc-aa 3 oxidase supercomplex. This suggest that electrons within this supercomplex are diverted to Nar1 during O2 limitation. Receiving electrons from this supercomplex potentially allows nitrate reduction to be coupled to the Q-cycle of the cytochrome bcc complex. This modification likely improves the efficiency of energy conservation, extending longevity of spores under O2 limitation. Knowledge gained on the bioenergetics of NO3 - respiration in the actinobacteria will aid our understanding of how many microorganisms survive under conditions of extreme nutrient and energy restriction.


Assuntos
Nitrato Redutase/metabolismo , Nitratos/metabolismo , Prótons , Streptomyces coelicolor/enzimologia , Anaerobiose , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Nitrato Redutase/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
19.
Microbiology (Reading) ; 165(8): 905-916, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31259680

RESUMO

The three nitrate reductases (Nar) of the saprophytic aerobic actinobacterium Streptomyces coelicolor A3(2) contribute to survival when oxygen becomes limiting. In the current study, we focused on synthesis of the Nar2 enzyme, which is the main Nar enzyme present and active in exponentially growing mycelium. Synthesis of Nar2 can, however, also be induced in spores after extended periods of anoxic incubation. The osdRK genes (oxygen stress and development) were recently identified to encode a two-component system important for expression of the nar2 operon in mycelium. OsdK is a predicted histidine kinase and we show here that an osdK mutant completely lacks Nar2 enzyme activity in mycelium. Recovery of Nar2 enzyme activity was achieved by re-introduction of the osdRK genes into the mutant on an integrative plasmid. In anoxically incubated spores, however, the osdK mutant retained the ability to synthesize NarG2, the catalytic subunit of Nar2. We could also demonstrate that synthesis of NarG2 in spores occurred only under hypoxic conditions; anoxia, as well as O2 concentrations significantly higher than 1 % in the gas-phase, failed to result in induction of NarG2 synthesis. Together, these findings indicate that, although Nar2 synthesis in both mycelium and spores is induced by oxygen limitation, different mechanisms control these processes and only Nar2 synthesis in mycelium is under the control of the OsdKR two-component system.


Assuntos
Histidina Quinase/metabolismo , Micélio/metabolismo , Nitrato Redutase/biossíntese , Esporos Bacterianos/metabolismo , Streptomyces coelicolor , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Hipóxia , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
20.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858301

RESUMO

Spores have strongly reduced metabolic activity and are produced during the complex developmental cycle of the actinobacterium Streptomyces coelicolor Resting spores can remain viable for decades, yet little is known about how they conserve energy. It is known, however, that they can reduce either oxygen or nitrate using endogenous electron sources. S. coelicolor uses either a cytochrome bd oxidase or a cytochrome bcc-aa3 oxidase supercomplex to reduce oxygen, while nitrate is reduced by Nar-type nitrate reductases, which typically oxidize quinol directly. Here, we show that in resting spores the Nar1 nitrate reductase requires a functional bcc-aa3 supercomplex to reduce nitrate. Mutants lacking the complete qcr-cta genetic locus encoding the bcc-aa3 supercomplex showed no Nar1-dependent nitrate reduction. Recovery of Nar1 activity was achieved by genetic complementation but only when the complete qcr-cta locus was reintroduced to the mutant strain. We could exclude that the dependence on the supercomplex for nitrate reduction was via regulation of nitrate transport. Moreover, the catalytic subunit, NarG1, of Nar1 was synthesized in the qcr-cta mutant, ruling out transcriptional control. Constitutive synthesis of Nar1 in mycelium revealed that the enzyme was poorly active in this compartment, suggesting that the Nar1 enzyme cannot act as a typical quinol oxidase. Notably, nitrate reduction by the Nar2 enzyme, which is active in growing mycelium, was not wholly dependent on the bcc-aa3 supercomplex for activity. Together, our data suggest that Nar1 functions together with the proton-translocating bcc-aa3 supercomplex to increase the efficiency of energy conservation in resting spores.IMPORTANCEStreptomyces coelicolor forms spores that respire with either oxygen or nitrate, using only endogenous electron donors. This helps maintain a membrane potential and, thus, viability. Respiratory nitrate reductase (Nar) usually receives electrons directly from reduced quinone species; however, we show that nitrate respiration in spores requires a respiratory supercomplex comprising cytochrome bcc oxidoreductase and aa3 oxidase. Our findings suggest that the Nar1 enzyme in the S. coelicolor spore functions together with the proton-translocating bcc-aa3 supercomplex to help maintain the membrane potential more efficiently. Dissecting the mechanisms underlying this survival strategy is important for our general understanding of bacterial persistence during infection processes and of how bacteria might deal with nutrient limitation in the natural environment.


Assuntos
Citocromos b/metabolismo , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos/metabolismo , Nitrato Redutase/metabolismo , Streptomyces coelicolor/enzimologia , Citocromos b/genética , Citocromos c/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Teste de Complementação Genética , Loci Gênicos , Hidroquinonas/metabolismo , Complexos Multienzimáticos/genética , Mutação , Nitrato Redutase/genética , Nitratos/metabolismo , Oxirredução , Ligação Proteica , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética , Streptomyces coelicolor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA