Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 9(3): 296-304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26296437

RESUMO

Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed.


Assuntos
Citoesqueleto de Actina/química , Corantes Fluorescentes/química , Nanodiamantes/química , Nanotecnologia , Animais , Modelos Moleculares , Conformação Molecular , Coelhos
2.
Sci Transl Med ; 6(219): 219ra7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431111

RESUMO

Inflammatory monocyte-derived effector cells play an important role in the pathogenesis of numerous inflammatory diseases. However, no treatment option exists that is capable of modulating these cells specifically. We show that infused negatively charged, immune-modifying microparticles (IMPs), derived from polystyrene, microdiamonds, or biodegradable poly(lactic-co-glycolic) acid, were taken up by inflammatory monocytes, in an opsonin-independent fashion, via the macrophage receptor with collagenous structure (MARCO). Subsequently, these monocytes no longer trafficked to sites of inflammation; rather, IMP infusion caused their sequestration in the spleen through apoptotic cell clearance mechanisms and, ultimately, caspase-3-mediated apoptosis. Administration of IMPs in mouse models of myocardial infarction, experimental autoimmune encephalomyelitis, dextran sodium sulfate-induced colitis, thioglycollate-induced peritonitis, and lethal flavivirus encephalitis markedly reduced monocyte accumulation at inflammatory foci, reduced disease symptoms, and promoted tissue repair. Together, these data highlight the intricate interplay between scavenger receptors, the spleen, and inflammatory monocyte function and support the translation of IMPs for therapeutic use in diseases caused or potentiated by inflammatory monocytes.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Microesferas , Monócitos/imunologia , Animais , Apoptose , Encéfalo/patologia , Movimento Celular , Sobrevivência Celular , Colite/patologia , Colite/prevenção & controle , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/prevenção & controle , Rim/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Tamanho da Partícula , Peritônio/patologia , Poliestirenos/química , Receptores Imunológicos/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Baço/patologia , Febre do Nilo Ocidental
3.
ACS Nano ; 7(5): 3833-43, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23586780

RESUMO

The nitrogen vacancy (NV) center is the most widely studied single optical defect in diamond with great potential for applications in quantum technologies. Development of practical single-photon devices requires an understanding of the emission under a range of conditions and environments. In this work, we study the properties of a single NV center in nanodiamonds embedded in an air-like silica aerogel environment which provides a new domain for probing the emission behavior of NV centers in nanoscale environments. In this arrangement, the emission rate is governed primarily by the diamond crystal lattice with negligible contribution from the surrounding environment. This is in contrast to the conventional approach of studying nanodiamonds on a glass coverslip. We observe an increase in the mean lifetime due to the absence of a dielectric interface near the emitting dipoles and a distribution arising from the irregularities in the nanodiamond geometry. Our approach results in the estimation of the mean quantum efficiency (~0.7) of the nanodiamond NV emitters.

4.
Proteomics ; 13(9): 1437-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456920

RESUMO

High-affinity molecular pairs provide a convenient and flexible modular base for the design of molecular probes and protein/antigen assays. Specificity and sensitivity performance indicators of a bioassay critically depend on the dissociation constant (K(D)) of the molecular pair, with avidin:biotin being the state-of-the-art molecular pair (K(D) ∼ 1 fM) used almost universally for applications in the fields of nanotechnology and proteomics. In this paper, we present an alternative high-affinity protein pair, barstar:barnase (K(D) ∼ 10 fM), which addresses several shortfalls of the avidin:biotin system, including non-negligible background due to the non-specific binding. A quantitative assessment of the non-specific binding carried out using a model assay revealed inherent irreproducibility of the [strept]avidin:biotin-based assays, attributed to the avidin binding to solid phases, endogenous biotin molecules and serum proteins. On the other hand, the model assays assembled via a barstar:barnase protein linker proved to be immune to such non-specific binding, showing good prospects for high-sensitivity rare biomolecular event nanoproteomic assays.


Assuntos
Proteínas de Bactérias/metabolismo , Bioensaio/métodos , Proteômica/métodos , Ribonucleases/metabolismo , Anticorpos/genética , Avidina/metabolismo , Biotina/metabolismo , Escherichia coli/genética , Microscopia de Fluorescência , Análise Serial de Proteínas/métodos , Receptor ErbB-2/imunologia , Estreptavidina/metabolismo
5.
Nat Nanotechnol ; 8(3): 175-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396312

RESUMO

Nitrogen vacancy (NV) centres in diamond are promising elemental blocks for quantum optics, spin-based quantum information processing and high-resolution sensing. However, fully exploiting the capabilities of these NV centres requires suitable strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and three-dimensional spatial manipulation of individual nanodiamonds hosting a single NV spin. Remarkably, we find that the NV axis is nearly fixed inside the trap and can be controlled in situ by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescence lifetime measurements near an integrated photonic system, we demonstrate individual optically trapped NV centres as a novel route for both three-dimensional vectorial magnetometry and sensing of the local density of optical states.


Assuntos
Elétrons , Nitrogênio/química , Fótons , Nanotecnologia/tendências , Pontos Quânticos
6.
PLoS One ; 8(1): e52997, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23301012

RESUMO

Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm) fluorescently labeled (Dragon Green) superparamagnetic iron oxide particles (M-SPIO particles); and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.


Assuntos
Adipócitos/citologia , Diamante/química , Compostos Férricos/farmacologia , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Carbono/química , Adesão Celular , Linhagem da Célula , Membrana Celular/metabolismo , Sobrevivência Celular , Corantes/farmacologia , Meios de Cultivo Condicionados/farmacologia , Dextranos/farmacologia , Humanos , Lipectomia , Magnetismo , Nanopartículas de Magnetita , Nanopartículas/química , Proteômica/métodos
7.
Small ; 9(1): 132-9, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23024073

RESUMO

Control over the quantum states of individual luminescent nitrogen-vacancy (NV) centres in nanodiamonds (NDs) is demonstrated by careful design of the crystal host: its size, surface functional groups, and interfacing substrate. By progressive etching of the ND host, the NV centres are induced to switch from latent, through continuous, to intermittent or "blinking" emission states. The blinking mechanism of the NV centre in NDs is elucidated and a qualitative model proposed to explain this phenomenon in terms of the centre electron(s) tunnelling to acceptor site(s). These measurements suggest that the substrate material and its proximity to the NV are responsible for the fluorescence intermittency.

8.
Biophys Rev ; 3(4): 171-184, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510046

RESUMO

In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA