Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38920070

RESUMO

BACKGROUND: A highly efficient superior catalyst of Ni (II) and VO (IV) metal complexes supported on MCM-41 has been synthesized and developed for chemoselective oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using H2O2 as a green and efficient procedure. All sulfoxides and disulfides were obtained in short reaction times with excellent yields. The over-oxidation of sulfides or thiols was not observed and all products were synthesized in high purity. These catalysts could be recovered and reused several times without any significant loss in their catalytic activity. Compared to the old catalysts in the literature, these catalysts showed better activity and selectivity for the synthesis of sulfoxide and disulfide derivatives, which shows the novelty of this work. METHODS: At first, the mesoporous MCM-41 was synthesized, and further, its surface was modified by (3-chloropropyl)-triethoxysilane (CPTES). Then, the modified MCM-41 (nPrCl-MCM- 41) was functionalized by adenine. In the next step, the functionalized MCM-41 (6AP-MCM- 41) was used as support for the immobilization of nickel and oxo-vanadium as final catalysts (Ni-6AP-MCM-41 or VO-6AP-MCM-41). The structure and properties of these catalysts have been identified by XRD, SEM, TGA, FT-IR, and AAS spectral analyses. These catalysts were used in the chemoselective oxidation of sulfides and oxidative coupling of thiols. RESULTS: These complexes catalyzed all reactions well at room temperature. According to the results obtained, the hydroxyl groups of some derivatives, including 2-(methylthio) ethanol or 2,2-(phenylthio) ethanol, remained unchanged during the reaction. CONCLUSION: The method has been found to possess the advantages of low cost, high efficiency, high yields, recovery, and reusability for several runs without significant loss in the catalytic activity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33183195

RESUMO

The article has been withdrawn at the request of the editor of the journal Combinatorial Chemistry & High Throughput Screening due to incoherent content. Bentham Science apologizes to the readers of the journal for any inconvenience this may cause. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA