Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Microb Ecol ; 87(1): 120, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340684

RESUMO

The root-knot nematode (RKN) causes significant yield loss in tomatoes. Understanding the interaction of biocontrol agents (BCAs)-nematicides-soil microbiomes and RKNs is essential for enhancing the efficacy of biocontrol agents and nematicides to curb RKN damage to crops. The present study aimed to evaluate the in vitro effectiveness of BACa and nematicide against RKN and to apply the amplicon sequencing to assess the interaction of Bacillus velezensis (VB7) and Trichoderma koningiopsis (TK) against RKNs. Metagenomic analysis revealed the relative abundance of three phyla such as Proteobacteria (42.16%), Firmicutes (19.57%), and Actinobacteria (17.69%) in tomato rhizospheres. Those tomato rhizospheres treated with the combined application of B. velezensis VB7 + T. koningiopsis TK and RKN had a greater frequency of diversity and richness than the control. RKN-infested tomato rhizosphere drenched with bacterial and fungal antagonists had the maximum diversity index of bacterial communities. A strong correlation with a maximum number of interconnection edges in the phyla Proteobacteria, Firmicutes, and Actinobacteria was evident in soils treated with both B. velezensis VB7 and T. koningiopsis TK challenged against RKN in infected soil. The present study determined a much greater diversity of bacterial taxa observed in tomato rhizosphere soils treated with B. velezensis VB7 and T. koningiopsis TK than in untreated soil. It is suggested that the increased diversity and abundance of bacterial communities might be responsible for increased nematicidal properties in tomato plants. Hence, the combined applications of B. velezensis VB7 and T. koningiopsis TK can enhance the nematicidal action to curb RKN infecting tomatoes.


Assuntos
Bacillus , Controle Biológico de Vetores , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Animais , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Bacillus/genética , Bacillus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Trichoderma/genética , Tylenchoidea/fisiologia , Microbiota , Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Bactérias/genética , Bactérias/classificação
2.
Sci Rep ; 14(1): 20658, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39232047

RESUMO

Due to its nutritional value and health benefits, the date palm (Phoenix dactylifera L.) is an essential dietary food crop throughout Middle Eastern and African countries. Consumers are concerned about the possible microbial contamination of dates, especially since most dates arriving in local markets are unprocessed. The absence of processing increases the possibility of microbial contamination, which raises the probability of microbial contamination. This study aims to analyze and evaluate the variability of fungal and bacterial microbiota identified in the most popular date palm fruits in Saudi Arabia. The study assessed ten date variety fruits from the most popular date palm varieties for consumption in Saudi Arabia and analyzed the microbial count. Morphological and molecular characterization and comparison of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences identified 78 fungi, including 36 distinct species across 15 fungal genera. Alternaria, Fusarium, Curvilaria, Aspergillus, and Penicillium were the most frequent genera among the ten fruit cultivars studied, according to ITS-rDNA sequence analysis. Furthermore, 36 bacterial isolates were obtained from ten date varieties studied, each with a unique colony morphology. These isolates were identified based on sequence alignment and comparison of their 16S rDNA internal spacer regions to those available in public databases. The results showed that the bacterial isolates included 15 species from five bacterial genera. The results suggested that Bacillus, Stenotrophomonas, and Brucella were the prevailing genera among the ten tested fruit varieties. Some bacterial genera, such as Brucella, Achromobacter, and Stenotrophomonas, are well-known potential human pathogens. Chaetomium globosum was also recognized as air pollution causing adverse health effects such as allergies and as the causal agent of human fungal infections among the tested date varieties; the Rashodiah type exhibited the highest fungal contamination, whereas the Sagai variety displayed the lowest fungal contamination. Conversely, the Sukkari, Barhi, and Mejdool varieties were the most contaminated with bacteria among the ten tested varieties, while the Khalas variety showed the least bacterial contamination. To the best of the authors' knowledge, this study provides the initial comprehensive account of the molecular and morphological identification of all fungal and bacterial genera associated with date palm (P. dactylifera) fruits.


Assuntos
Bactérias , Biodiversidade , Frutas , Fungos , Microbiota , Phoeniceae , Phoeniceae/microbiologia , Phoeniceae/genética , Frutas/microbiologia , Microbiota/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Arábia Saudita , Filogenia , RNA Ribossômico 16S/genética , DNA Espaçador Ribossômico/genética
3.
Heliyon ; 10(14): e34128, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100488

RESUMO

Recently, there has been an increasing demand for medicinal plants to control diseases for good health and well-being, as primary health facilities are inadequate in certain populations to cure infections. Since synthetic medicines are toxic to humans and other animals, the present research is thus focused on using traditional medicine for treating various ailments as they are harmless. Based on the above facts, the current study was conducted to assay the antimicrobial, anti-diabetic, anti-cholinesterase, anti-oxidant, anti-quorum sensing, and anti-antibiotic resistance modifying effect of extracts of Cyperus esculentus. This study found 37 and 30 chemicals in butanol and dichloromethane (DCM) extracts using a gas chromatograph mass spectrophotometer (GC-MS). Most active compounds identified were benzofuran, 2,3-dihydro-, 1,2,3-benzenetriol, 3-bornanone, oxime and oleic acid by extracts of butanol whereas dichloromethane extracted three major active compounds (2,3-dihydro-3,5-dihydroxy-, 4H-pyran-4-one 3-deoxy-d-mannoic lactone and 5-hydroxymethylfurfural). Both dichloromethane and butanol extracts showed the highest antimicrobial activity. Compared to aqueous extracts, dichloromethane, and butanol showed excellent anti-diabetic anti-cholinesterase activities and inhibited virulence factors regulated by quorum sensing (QS). Anti-oxidants increased in solvent extracts (DCM and butanol) compared to aqueous extracts. Results of scanning electron microscope (SEM) and Fourier Transmission Infrared (FTIR) indicated damage to the cell membrane of S. aureus by the formation of pits and breakage in functional groups exposed to the extracts of butanol and dichloromethane compared to aqueous extracts. The above results confirmed that C. esculentus can be an alternative medicine for treating diseases.

4.
Chemosphere ; 364: 143068, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39151584

RESUMO

Wheat productivity is constrained by genetic, agronomic, and climate factors, though it is an important crop for food production worldwide. The present study evaluated the effect of bio-fertilizer consortia and seaweed extracts on the growth and yield of two wheat varieties under different irrigation regimes in a field study. This experiment was conducted in a split-split plot based on a randomized complete block design with four replications in 2018 and 2019. Irrigation treatments were the main factor, wheat variety (Sardari and Sirvan) the sub-factor, and bio-fertilizers the sub-sub-factors. The results showed that irrigation regimes significantly improved leaf width, number of leaves, fresh weight of roots and shoots, osmotic potential, leaf water content, and number of stomata respectively by 57.53, 38.59, 106.65, 135.29, 87.92, 14.22 and 13.77, 88.02 and 96.11 percent compared to dry-land conditions. Applying one- and two-times irrigation increased grain yield by 51% and 79%, respectively, and the response varied in wheat varieties. Sardari variety due to having smaller leaf dimensions (Leaf length and width) and lower fresh and dry weight of roots and shoots, as well as lower leaf and tissue water content, had lower grain yield than the Sirvan variety. All the bio-fertilizers positively impacted the growth and yield of both varieties. However, the highest average grain yield in the first and second years of the experiment (with an average of 5226.25 and 4923.33 kg/ha, respectively) were found under the combined application of Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract. The results of the present study underscore the importance of irrigation regimes and consortia of bio-fertilizers for improving grain yield. This study also highlighted the resilience of the studied wheat varieties and bio-fertilizers to projected climate changes. These findings could provide insights into adaptive strategies for mitigating the impact of climate change on wheat production.


Assuntos
Irrigação Agrícola , Fertilizantes , Folhas de Planta , Alga Marinha , Triticum , Triticum/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
5.
Heliyon ; 10(12): e32580, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005928

RESUMO

Organophosphates constitute a major class of pesticides widely employed in agriculture to manage insect pests. Their toxicity is attributed to their ability to inhibit the functioning of acetylcholinesterase (AChE), an essential enzyme for normal nerve transmission. Organophosphates, especially chlorpyrifos, have been a key component of the integrated pest management (IPM) in onions, effectively controlling onion maggot Delia antiqua, a severe pest of onions. However, the growing concerns over the use of this insecticide on human health and the environment compelled the need for an alternative organophosphate and a potential microbial agent for bioremediation to mitigate organophosphate pesticide pollution. In the present study, chloropyrifos along with five other organophosphate insecticides, phosmet, primiphos-methyl, isofenphos, iodofenphos and tribuphos, were screened against the target protein AChE of D. antiqua using molecular modeling and docking techniques. The results revealed that iodofenphos showed the best interaction, while tribuphos had the lowest interaction with the AChE based on comparative binding energy values. Further, protein-protein interaction analysis conducted using the STRING database and Cytoscap software revealed that AChE is linked with a network of 10 different proteins, suggesting that the function of AChE is disrupted through interaction with insecticides, potentially leading to disruption within the network of associated proteins. Additionally, an in silico study was conducted to predict the binding efficiency of two organophosphate degrading enzymes, organophosphohydrolase (OpdA) from Agrobacterium radiobacter and Trichoderma harzianum paraoxonase 1 like (ThPON1-like) protein from Trichoderma harzianum, with the selected insecticides. The analysis revealed their potential to degrade the pesticides, offering a promising alternative before going for cumbersome onsite remediation.

6.
Microb Ecol ; 87(1): 83, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888737

RESUMO

Bacillus species appearas the most attractive plant growth-promoting rhizobacteria (PGPR) and alternative to synthetic chemical pesticides. The present study examined the antagonistic potential of spore forming-Bacilli isolated from organic farm soil samples of Allahabad, India. Eighty-seven Bacillus strains were isolated and characterized based on their morphological, plant growth promoting traits and molecular characteristics. The diversity analysis used 16S-rDNA, BOX-element, and enterobacterial repetitive intergenic consensus. Two strains, PR30 and PR32, later identified as Bacillus sp., exhibited potent in vitro antagonistic activity against Ralstonia solanaceorum. These isolates produced copious amounts of multiple PGP traits, such as indole-3-acetic acid (40.0 and 54.5 µg/mL), phosphate solubilization index (PSI) (4.4 and 5.3), ammonia, siderophore (3 and 4 cm), and 1-aminocyclopropane-1-carboxylate deaminase (8.1and 9.2 µM/mg//h) and hydrogen cyanide. These isolates were subjected to the antibiotic sensitivity test. The two potent isolates based on the higher antagonistic and the best plant growth-promoting ability were selected for plant growth-promoting response studies in tomatoe, broccoli, and chickpea. In the pot study, Bacillus subtilis (PR30 and PR31) showed significant improvement in seed germination (27-34%), root length (20-50%), shoot length (20-40%), vigor index (50-75%), carotenoid content (0.543-1.733), and lycopene content (2.333-2.646 mg/100 g) in tomato, broccoli, and chickpea. The present study demonstrated the production of multiple plant growth-promoting traits by the isolates and their potential as effective bioinoculants for plant growth promotion and biocontrol of phytopathogens.


Assuntos
Bacillus , Biodiversidade , Microbiologia do Solo , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Índia , Raízes de Plantas/microbiologia , Cicer/microbiologia , Cicer/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Rizosfera , Filogenia , Antibiose , Sideróforos/metabolismo , Ácidos Indolacéticos/metabolismo
7.
Heliyon ; 10(9): e30065, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726197

RESUMO

Chilli is an indispensable food item in the daily life of humans but it is affected by many insects, so various pesticides, including spiromesifen, are applied to chilli crops to protect this crop from insect infestation. However, the use of pesticides poses environmental and health issues. These issues have raised the demand for pesticide-free chillies among consumers. The primary aim of this study was to assess the efficacy of various decontamination methods in removing spiromesifen residues from chilli fruits. A randomized block design was employed to conduct a supervised field experiment at the Rajasthan Agricultural Research Institute in Durgapura, Jaipur, India. The samples of chillies treated with pesticides are subjected to seven different homemade techniques. The samples were extracted using the QuEChERS method, known for its efficiency, affordability, simplicity, robustness, and safety. The analysis of spiromesifen residues was conducted using gas chromatography (GC) equipped with an electron capture detector (ECD), and the results were verified using gas chromatography-mass spectrometry (GC-MS). Out of several decontamination methods, the lukewarm water treatment was more effective than any other decontamination method, which led to the highest elimination of spiromesifen residue, whereas rinsing with tap water eliminates the least amount of spiromesifen residue. So, the lukewarm water treatment is a safe, cost-effective, and eco-friendly approach to remove spiromesifen residues from Chilli.

8.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
9.
Microb Ecol ; 87(1): 60, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630182

RESUMO

Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.


Assuntos
Arachis , Pseudomonas fluorescens , Desferroxamina , Índia , RNA Ribossômico 16S/genética , Nutrientes , Sideróforos , Ferro , Solo
10.
Sci Rep ; 13(1): 21694, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066078

RESUMO

All elements of the pistachio tree are considered raw pistachio by-products. The soft hull makes up the majority of these by-products. It contains proteins, fats, minerals, vitamins, phenolics contents (TPC), and antioxidants. Early smiling pistachios are one of the most important sources of pistachio contamination with aflatoxin in the garden and processing stages. The present study aimed to evaluate pistachio hull essential oil (EO) composition, and antioxidant and antimicrobial properties under in vitro conditions. TPC, antioxidant, and antimicrobial activity were measured using the Folin-Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method, and serial dilution titration method, respectively. A gas chromatography system with a mass spectrometer (GC-MS) was utilized to determine the chemical components of the EO. The findings revealed that the quantity of TPC and anti-radical activity in IC50 were 245.43 mg gallic acid/mL and 206.32 µL/L, respectively. The free radical absorption activity of DPPH (%) increased with EO content. The inhibitory activity of EO on Staphylococcus aureus and Bacillus subtilis was much lower than that of streptomycin and penicillin. Aspergillus flavus was effectively inhibited by pistachio hull EO, comparable to fluconazole. The results obtained from GC-MS showed that the major compounds in pistachio hull essential oil include α-pinene (47.36%), terpinolene (10.57%), limonene (9.13%), and L-bornyl acetate (8.57%). The findings indicated that pistachio hull EO has potent antibacterial and antioxidant components and can be employed as a natural antimicrobial and antioxidant in food systems.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Pistacia , Antioxidantes/farmacologia , Antioxidantes/química , Pistacia/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Radicais Livres , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA