Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 9(2): 223-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510717

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a major clinical problem, with limited treatments. HFpEF is characterized by a distinct, but poorly understood, skeletal muscle pathology, which could offer an alternative therapeutic target. In a rat model, we identified impaired myonuclear accretion as a mechanism for low myofiber growth in HFpEF following resistance exercise. Acute caloric restriction rescued skeletal muscle pathology in HFpEF, whereas cardiac therapies had no effect. Mechanisms regulating myonuclear accretion were dysregulated in patients with HFpEF. Overall, these findings may have widespread implications in HFpEF, indicating combined dietary with exercise interventions as a beneficial approach to overcome skeletal muscle pathology.

2.
Am J Physiol Cell Physiol ; 323(6): C1601-C1610, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252128

RESUMO

Hind limb ischemia (HLI) is the most severe form of peripheral arterial disease, associated with a substantial reduction of limb blood flow that impairs skeletal muscle homeostasis to promote functional disability. The molecular regulators of HLI-induced muscle perturbations remain poorly defined. This study investigated whether changes in the molecular catabolic-autophagy signaling network were linked to temporal remodeling of skeletal muscle in HLI. HLI was induced in mice via hindlimb ischemia (femoral artery ligation) and confirmed by Doppler echocardiography. Experiments were terminated at time points defined as early- (7 days; n = 5) or late- (28 days; n = 5) stage HLI. Ischemic and nonischemic (contralateral) limb muscles were compared. Ischemic versus nonischemic muscles demonstrated overt remodeling at early-HLI but normalized at late-HLI. Early-onset fiber atrophy was associated with excessive autophagy signaling in ischemic muscle; protein expression increased for Beclin-1, LC3, and p62 (P < 0.05) but proteasome-dependent markers were reduced (P < 0.05). Mitophagy signaling increased in early-stage HLI that aligned with an early and sustained loss of mitochondrial content (P < 0.05). Upstream autophagy regulators, Sestrins, showed divergent responses during early-stage HLI (Sestrin2 increased while Sestrin1 decreased; P < 0.05) in parallel to increased AMP-activated protein kinase (AMPK) phosphorylation (P < 0.05) and lower antioxidant enzyme expression. No changes were found in markers for mechanistic target of rapamycin complex 1 signaling. These data indicate that early activation of the sestrin-AMPK signaling axis may regulate autophagy to stimulate rapid and overt muscle atrophy in HLI, which is normalized within weeks and accompanied by recovery of muscle mass. A complex interplay between Sestrins to regulate autophagy signaling during early-to-late muscle remodeling in HLI is likely.


Assuntos
Membro Posterior , Isquemia , Músculo Esquelético , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Modelos Animais de Doenças , Artéria Femoral/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Isquemia/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Sestrinas
3.
Eur J Transl Myol ; 32(2)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421919

RESUMO

Despite COVID-19 outbreak, the program of the 2022 Padua Days of Muscle and Mobility Medicine (PDM3) was confirmed On-site in February from March 30 to April 2, 2022 to be held at the University of Padua Aula Magna and at Conference Hall of the Hotel Petrarca of Thermae of Euganean Hills (Padua), Italy. Over 130 abstracts, including the last-minute submissions listed below, convinced organizers to extend the program to five days. The sponsorship of the University of Florida and the willingness of attendees to meet friends after two years of virtual conferences were the keys of success, despite concerns for current events in East Europe. Only fourteen Virtual presentations were in the final program, eight due to last-minute Coronavirus infections and six for East Europe problems. The first two days of the programincluded scientists and clinicians of the University of Florida, USA and their invitees from Canada, France, Italy, Swiden, Swiss, UK and USA. Researchers and clinicians from Austria, Belgium, France, Germany, Iceland, Ireland, Italy, Russia, Slovakia, Slovenia, UK and USA filled the program of last three days more oriented to aging and rehabilitation. The large majority of abstracts was e-published before the meeting; here are last-minute abstracts and the final program. The program of the 2023 On-site PDM3 was informally designed during the Meeting, but will be circulated during 2022 summer. Fix the dates in your agenda from Thursday March 28 to Friday March 31. For now, please, submit Communications to the European Journal of Translational Myology, PAGEpress, Pavia, Italy and Original Articles or Reviews to the Journal Diagnostics, MDPI, Basel, Swiss. Both journals will host Special PDM3 Sections and will apply 50% discount on editorial processing fees to the first 15 accepted typescripts.

4.
ESC Heart Fail ; 8(1): 3-15, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33225593

RESUMO

Two highly prevalent and growing global diseases impacted by skeletal muscle atrophy are chronic heart failure (HF) and type 2 diabetes mellitus (DM). The presence of either condition increases the likelihood of developing the other, with recent studies revealing a large and relatively poorly characterized clinical population of patients with coexistent HF and DM (HFDM). HFDM results in worse symptoms and poorer clinical outcomes compared with DM or HF alone, and cardiovascular-focused disease-modifying agents have proven less effective in HFDM indicating a key role of the periphery. This review combines current clinical knowledge and basic biological mechanisms to address the critical emergence of skeletal muscle atrophy in patients with HFDM as a key driver of symptoms. We discuss how the degree of skeletal muscle wasting in patients with HFDM is likely underpinned by a variety of mechanisms that include mitochondrial dysfunction, insulin resistance, inflammation, and lipotoxicity. Given many atrophic triggers (e.g. ubiquitin proteasome/autophagy/calpain activity and supressed IGF1-Akt-mTORC1 signalling) are linked to increased production of reactive oxygen species, we speculate that a higher pro-oxidative state in HFDM could be a unifying mechanism that promotes accelerated fibre atrophy. Overall, our proposal is that patients with HFDM represent a unique clinical population, prompting a review of treatment strategies including further focus on elucidating potential mechanisms and therapeutic targets of muscle atrophy in these distinct patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Diabetes Mellitus Tipo 2/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Humanos , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Transdução de Sinais
5.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630118

RESUMO

Skeletal muscle wasting represents a common trait in many conditions, including aging, cancer, heart failure, immobilization, and critical illness. Loss of muscle mass leads to impaired functional mobility and severely impedes the quality of life. At present, exercise training remains the only proven treatment for muscle atrophy, yet many patients are too ill, frail, bedridden, or neurologically impaired to perform physical exertion. The development of novel therapeutic strategies that can be applied to an in vivo context and attenuate secondary myopathies represents an unmet medical need. This review discusses recent progress in understanding the molecular pathways involved in regulating skeletal muscle wasting with a focus on pro-catabolic factors, in particular, the ubiquitin-proteasome system and its activating muscle-specific E3 ligase RING-finger protein 1 (MuRF1). Mechanistic progress has provided the opportunity to design experimental therapeutic concepts that may affect the ubiquitin-proteasome system and prevent subsequent muscle wasting, with novel advances made in regards to nutritional supplements, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) inhibitors, myostatin antibodies, ß2 adrenergic agonists, and small-molecules interfering with MuRF1, which all emerge as a novel in vivo treatment strategies for muscle wasting.


Assuntos
Terapia de Alvo Molecular , Atrofia Muscular/tratamento farmacológico , Animais , Humanos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas com Motivo Tripartido/antagonistas & inibidores , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
6.
FASEB J ; 34(9): 11844-11859, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652768

RESUMO

Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Doenças Ósseas Metabólicas/fisiopatologia , Dieta com Restrição de Proteínas , Lactação/fisiologia , Músculo Esquelético/fisiologia , Reprodução/fisiologia , Animais , Animais Recém-Nascidos , Peso Corporal , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos Transgênicos , MicroRNAs/genética , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Desmame
7.
Redox Biol ; 26: 101294, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31450104

RESUMO

Previous studies have shown a significant increase in the mitochondrial generation of hydrogen peroxide (H2O2) and other peroxides in recently denervated muscle fibers. The mechanisms for generation of these peroxides and how the muscle responds to these peroxides are not fully established. The aim of this work was to determine the effect of denervation on the muscle content of proteins that may contribute to mitochondrial peroxide release and the muscle responses to this generation. Denervation of the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in mice was achieved by surgical removal of a small section of the peroneal nerve prior to its entry into the muscle. An increase in mitochondrial peroxide generation has been observed from 7 days and sustained up to 21 days following denervation in the TA muscle fibers. This increased peroxide generation was reduced by incubation of skinned fibers with inhibitors of monoamine oxidases, NADPH oxidases or phospholipase A2 enzymes and the muscle content of these enzymes together with peroxiredoxin 6 were increased following denervation. Denervated muscle also showed significant adaptations in the content of several enzymes involved in the protection of cells against oxidative damage. Morphological analyses indicated a progressive significant loss of muscle mass in the TA muscle from 7 days up to 21 days following denervation due to fiber atrophy but without fiber loss. These results support the possibility that, at least initially, the increase in peroxide production may stimulate adaptations in an attempt to protect the muscle fibers, but that these processes are insufficient and the increased peroxide generation over the longer term may activate degenerative and atrophic processes in the denervated muscle fibers.


Assuntos
Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Oxirredução , Animais , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Transporte Proteico
8.
Redox Biol ; 10: 34-44, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27687219

RESUMO

Regular physical activity is effective as prevention and treatment for different chronic conditions related to the ageing processes. In fact, a sedentary lifestyle has been linked to a worsening of cellular ageing biomarkers such as telomere length (TL) and/or specific epigenetic changes (e.g. DNA methylation), with increase of the propensity to aging-related diseases and premature death. Extending our previous findings, we aimed to test the hypothesis that 12 weeks of low frequency, moderate intensity, explosive-type resistance training (EMRT) may attenuate age-associated genomic changes. To this aim, TL, global DNA methylation, TRF2, Ku80, SIRT1, SIRT2 and global protein acetylation, as well as other proteins involved in apoptotic pathway (Bcl-2, Bax and Caspase-3), antioxidant response (TrxR1 and MnSOD) and oxidative damage (myeloperoxidase) were evaluated before and after EMRT in whole blood or peripheral mononuclear cells (PBMCs) of elderly subjects. Our findings confirm the potential of EMRT to induce an adaptive change in the antioxidant protein systems at systemic level and suggest a putative role of resistance training in the reduction of global DNA methylation. Moreover, we observed that EMRT counteracts the telomeres' shortening in a manner that proved to be directly correlated with the amelioration of redox homeostasis and efficacy of training regime, evaluated as improvement of both muscle's power/strength and functional parameters.


Assuntos
Envelhecimento/genética , Antioxidantes/metabolismo , Metilação de DNA , Treinamento Resistido/métodos , Telômero/genética , Acetilação , Idoso , Epigênese Genética , Feminino , Homeostase , Humanos , Masculino , Oxirredução , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA