Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439841

RESUMO

The mitochondrial 2-oxoglutarate carrier (OGC), isolated and purified from rat brain mitochondria, was reconstituted into proteoliposomes to study the interaction with hemin, a porphyrin derivative, which may result from the breakdown of heme-containing proteins and plays a key role in several metabolic pathways. By kinetic approaches, on the basis of the single binding centre gated pore mechanism, we analyzed the effect of hemin on the transport rate of OGC in uptake and efflux experiments in proteoliposomes reconstituted in the presence of the substrate 2-oxoglutarate. Overall, our experimental data fit the hypothesis that hemin operates a competitive inhibition in the 0.5-10 µM concentration range. As a consequence of the OGC inhibition, the malate/aspartate shuttle might be impaired, causing an alteration of mitochondrial function. Hence, considering that the metabolism of porphyrins implies both cytoplasmic and mitochondrial processes, OGC may participate in the regulation of porphyrin derivatives availability and the related metabolic pathways that depend on them (such as oxidative phosphorylation and apoptosis). For the sake of clarity, a simplified model based on induced-fit molecular docking supported the in vitro transport assays findings that hemin was as good as 2-oxoglutarate to bind the carrier by engaging specific ionic hydrogen bond interactions with a number of key residues known for participating in the similarly located mitochondrial carrier substrate binding site.


Assuntos
Encéfalo/metabolismo , Hemina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Ligação Proteica , Proteolipídeos/metabolismo , Ratos
2.
Biochim Biophys Acta Bioenerg ; 1860(9): 708-716, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31340138

RESUMO

The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.


Assuntos
Antiporters/metabolismo , Carnitina Aciltransferases/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Animais , Aspergillus nidulans , Transporte Biológico , Carnitina Aciltransferases/química , Carnitina Aciltransferases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Conformação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência , Triptofano/química , Triptofano/genética
3.
Front Mol Biosci ; 5: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998111

RESUMO

The Mitochondrial Ascorbic Acid Transporter (MAT) from both rat liver and potato mitochondria has been reconstituted in proteoliposomes. The protein has a molecular mass in the range of 28-35 kDa and catalyzes saturable, temperature and pH dependent, unidirectional ascorbic acid transport. The transport activity is sodium independent and it is optimal at acidic pH values. It is stimulated by proton gradient, thus supporting that ascorbate is symported with H+. It is efficiently inhibited by the lysine reagent pyridoxal phosphate and it is not affected by inhibitors of other recognized plasma and mitochondrial membranes ascorbate transporters GLUT1(glucose transporter-1) or SVCT2 (sodium-dependent vitamin C transporter-2). Rat protein catalyzes a cooperative ascorbate transport, being involved two binding sites; the measured K0.5 is 1.5 mM. Taking into account the experimental results we propose that the reconstituted ascorbate transporter is not a GLUT or SVCT, since it shows different biochemical features. Data of potato transporter overlap the mammalian ones, except for the kinetic parameters non-experimentally measurable, thus supporting the MAT in plants fulfills the same transport role.

4.
Plant Physiol Biochem ; 85: 78-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394803

RESUMO

Assessing the selectivity, regulation and physiological relevance of aquaporin membrane channels (AQPs)requires structural and functional studies of wild type and modified proteins. In particular, when characterizing their transport properties, reconstitution in isolation from native cellular or membrane processes is of pivotal importance. Here, we describe rapid and efficient incorporation of OsPIP1;1, a rice AQP, in liposomes at analytical scale. PIP1;1 was produced as a histidine-tagged form, 10 His-OsPIP1;1, in an Escherichia coli-based expression system. The recombinant protein was purified by affinity chromatography and incorporated into liposomes by a micro-batchwise technology using egg-yolk phospholipids and the non-polar Amberlite resin. PIP1;1 proteoliposomes and control empty liposomes had good size homogeneity as seen by quasi-elastic light scattering and electron microscopy analyses. By stopped-flow light scattering, indicating correct protein folding of the incorporated protein, the osmotic water permeability exhibited by the PIP1;1 proteoliposomes was markedly higher than empty liposomes. Functional reconstitution of OsPIP1;1 was further confirmed by the low Arrhenius activation energy (3.37 kcal/mol) and sensitivity to HgCl2, a known AQP blocker, of the PIP1;1-mediated osmotic water conductance. These results provide a valuable contribution in fully elucidating the regulation and water-conducting property of PIP1;1, an AQP that needs to hetero-multimerize with AQPs of the PIP2 subgroupto reach the native plasma membrane and play its role. The micro-batchwise methodology is suitable for the functional reconstitution of whichever AQPs and other membrane transport proteins.


Assuntos
Aquaporinas/metabolismo , Oryza/metabolismo , Aquaporinas/química , Western Blotting , Eletroforese em Gel de Poliacrilamida , Histidina/química
5.
Bioorg Med Chem ; 18(16): 5903-14, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20667739

RESUMO

Several members of a new family of non-sugar-type alpha-glucosidase inhibitors, bearing a phthalimide moiety connected to a variously substituted phenoxy ring by an alkyl chain, were synthesized and their activities were investigated. The efficacy of the inhibition activity appeared to be governed by the chain length of the substrate. Substrates possessing 10 carbons afforded the highest levels of activity, which were one to two orders of magnitude more potent than the known inhibitor 1-deoxynojirimycin (dNM). Furthermore, structure-activity relationship studies indicated a critical role of electron-withdrawing substituents at the phenoxy group for the activity. Derivatives bearing a chlorine atom along with a strong electron-withdrawing group, such as a nitro group, were the most potent of the series.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Ftalimidas/química , Ftalimidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Humanos , Ftalimidas/síntese química , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
6.
Cell Calcium ; 45(4): 340-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19187959

RESUMO

We demonstrate that F281, a synthetic agonist of the sigma-2 receptor (s2R), induces a non transient increase in intracellular [Ca(2+)] ([Ca(2+)](i)) and cell death in SK-N-SH cells. Sigma receptors are classified into two subtypes, with different molecular weight and tissue distribution. While the sigma-1 receptor has been cloned, the s2r is less characterized and its physiological ligand and role need further investigation. In tumour cell lines, synthetic agonists of the s2R trigger apoptosis and modulate [Ca(2+)](i). In particular, CB-64D induces a Ca(2+) response while PB28 supresses Ca(2+) signalling. We have recently synthesized F281, by replacing the 5-methoxytetraline moiety of PB28 with a carbazole nucleus. Although this bioisosteric substitution should not affect the ligand affinity at the receptor, F281 (after 24h incubation) was more cytotoxic than PB28 (EC(50) values 65.4nM and 8.13 microM, respectively) in SK-N-SH cells. We used the fluorescent probes fura-2, rhod-2 and JC-1. F281 mobilizes Ca(2+) from mitochondria and from the endoplasmic reticulum, by opening its inositol 1,4,5-trisphosphate receptor; Ca(2+)-entry through the channels activated by store depletion was also observed. After the increase in [Ca(2+)](i) and within 10 min, we observed a sudden drop in metabolic activity and intracellular [ATP] leading to cell death.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Carbazóis/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piperazinas/farmacologia , Receptores sigma/agonistas , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ligantes , Ratos , Tapsigargina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA