Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 82(8): 1297-1301, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31044488

RESUMO

Although in recent years there has been intensification in the use of nanoparticles (NPs) for the production of many commercial products, few studies have been carried out to assess the risks associated with its use. Among the most used NPs, silver nanoparticles (AgNPs) have a preponderant position as they have various applications. In this study, 40 adult zebrafish were exposed to increasing concentrations of AgNPs (8, 45, and 70 µg/L) for 30 days to evaluate the effects on eyes after chronic exposure to AgNPs with an average diameter of 50 nm. From the morphological and ultrastructural analysis performed, no alteration or lesions of the corneal epithelium were detected.


Assuntos
Córnea/efeitos dos fármacos , Córnea/ultraestrutura , Nanopartículas Metálicas/química , Prata/farmacologia , Peixe-Zebra/anatomia & histologia , Animais , Epitélio Corneano/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/farmacologia , Poluentes Químicos da Água/toxicidade
2.
Front Physiol ; 8: 1039, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354061

RESUMO

The use of nanomaterials in several application fields has received in the last decades a great attention due to their peculiar properties, but also raised many doubts about possible toxicity when these materials are used for some specific applications, such as water purification. Indeed a careful investigation is needed in order to exclude possible harmful side effects related to the use of nanotechnology. Nanoparticles effects on the marine organisms may depend on their chemical composition, size, surface structure, solubility, shape and how the individual nanoparticles aggregate together. In order to make the most of their potential, without polluting the environment, many researchers are trying to trap them into some kind of matrix that keeps them active but avoids their dispersion in the environment. In this study we have tested nanocomposite membranes prepared using Nafion polymer combined with various fillers, such as anatase-type TiO2 nanoparticles and graphene oxide. The non-toxicity of these nanocomposites, already shown to be effective for water purification applications in our previous studies, was recognized by testing the effect of the different materials on zebrafish embryos. Zebrafish was considered an excellent model for ecotoxicological studies and for this motivation zebrafish embryos were exposed to different concentrations of free nanoparticles and to the nanocomposite membranes. As biomarkers of exposure, we evaluated the expression of heme-oxygenase 1 and inducible Nitric Oxide Synthases by immunohistochemistry and gene expression. Embryo toxicity test showed that nor sublethal effects neither mortality were caused by the different nanoparticles and nano-systems tested. Only zebrafish larvae exposed to free nanoparticles have shown a different response to antibodies anti-heme-oxygenase 1 and anti- inducible Nitric Oxide Synthases. The immunolocalization analysis in fact has highlighted an increase in the synthesis of these biomarkers.

3.
Front Physiol ; 8: 1011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311953

RESUMO

Nanotechnology is rapidly growing with nanoparticles produced and utilized in a wide range of commercial products worldwide. Among the different types of nanomaterials produced, silver nanoparticles (AgNPs) occupy a predominant position and they are used in electronics, clothing, food industry, cosmetics and medical devices. Nanosilver has also showed excellent performance in antibacterial application. Nowadays, the increasing use of AgNPs has put the evidence on their possible toxicity to the human health and the impact on the environment. This paper focus on adverse effects of AgNPs in adult of Danio rerio. Fishes exposed to increasing concentrations (8, 45, and 70 µg/l) silver nanoparticles (AgNPs, 25 nm in average diameter) and after treatment for 30 days, was quickly euthanized in MS-222. We have evaluated bioaccumulation of AgNPs using ICP-MS and analyzed histological changes, biomarkers of oxidative damage and gene expression in the gut, liver and gills tissues of AgNPs-treated zebrafish. The histological analysis showed lesions of secondary lamellae of the gills with different degrees of toxicity such as hyperplasia, lamellar fusion, subepithelial edema, and even in some cases telangiectasia. Huge necrosis of the intestinal villi was found in the gut. No lesion was detected in the liver. The analysis revealed a high expression of metallothioneins 1 (MTs 1) in animals exposed to AgNPs compared to the control group. The ICP-MS analysis shows that the amount of particles absorbed in all treated samples is almost the same. We can affirm that AgNPs toxicity linked more to their size and state of aggregation than to their concentrations. Silver nanoparticles can damage gills and gut because they are able to pass through the mucosal barrier thanks to their small size. The damage is still reversible because it is not documented injury to the basal membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA