Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825750

RESUMO

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.

2.
Alzheimers Dement ; 20(4): 2589-2605, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363009

RESUMO

INTRODUCTION: Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS: Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION: We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS: Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Vesículas Sinápticas/metabolismo , Cerebelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
3.
Cells ; 12(11)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296589

RESUMO

Reactive astrogliosis is an early event in the continuum of Alzheimer's disease (AD). Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of Aß plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current view of reactive astrogliosis heterogeneity-more than one subtype of astrocyte involved-in AD, we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive astrogliosis and improve the detection of AD in its early stages.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Astrócitos/patologia , Gliose/patologia , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Inflamação/patologia
4.
Sci Signal ; 15(760): eabm3720, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378750

RESUMO

Many dementias are propagated through the spread of "prion-like" misfolded proteins. This includes prion diseases themselves (such as Creutzfeldt-Jakob disease) and Alzheimer's disease (AD), for which no treatments are available to slow or stop progression. The M1 acetylcholine muscarinic receptor (M1 receptor) is abundant in the brain, and its activity promotes cognitive function in preclinical models and in patients with AD. Here, we investigated whether activation of the M1 receptor might slow the progression of neurodegeneration associated with prion-like misfolded protein in a mouse model of prion disease. Proteomic and transcriptomic analysis of the hippocampus revealed that this model had a molecular profile that was similar to that of human neurodegenerative diseases, including AD. Chronic enhancement of the activity of the M1 receptor with the positive allosteric modulator (PAM) VU0486846 reduced the abundance of prion-induced molecular markers of neuroinflammation and mitochondrial dysregulation in the hippocampus and normalized the abundance of those associated with neurotransmission, including synaptic and postsynaptic signaling components. PAM treatment of prion-infected mice prolonged survival and maintained cognitive function. Thus, allosteric activation of M1 receptors may reduce the severity of neurodegenerative diseases caused by the prion-like propagation of misfolded protein.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Animais , Camundongos , Príons/genética , Doenças Neurodegenerativas/genética , Patologia Molecular , Proteômica , Doenças Priônicas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34893539

RESUMO

There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein-biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.


Assuntos
Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptor Muscarínico M1/metabolismo , Animais , Células Cultivadas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Doenças Priônicas/genética , Receptor Muscarínico M1/genética , Transdução de Sinais
6.
Adv Pharmacol ; 88: 277-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416870

RESUMO

The M1 muscarinic acetylcholine receptor (mAChR) plays a crucial role in learning and memory processes and has long been identified as a promising therapeutic target for the improvement of cognitive decline in Alzheimer's disease (AD). As such, clinical trials with xanomeline, a mAChR orthosteric agonist, showed an improvement in cognitive and behavioral symptoms associated with AD. Despite this, the clinical utility of xanomeline was hampered by a lack of M1 receptor selectivity and adverse cholinergic responses attributed to activation of peripheral M2 and M3 mAChRs. More recently, efforts have focused on developing more selective M1 compounds via targeting the less-conserved allosteric binding pockets. As such, positive allosteric modulators (PAMs) have emerged as an exciting strategy to achieve exquisite selectivity for the M1 mAChR in order to deliver improvements in cognitive function in AD. Furthermore, over recent years it has become increasingly apparent that M1 therapeutics may also offer disease-modifying effects in AD, due to the modulation of pathogenic amyloid processing. This article will review the progress made in the development of M1 selective ligands for the treatment of cognitive decline in AD, and will discuss the current evidence that selective targeting of the M1 mAChR could also have the potential to modify AD progression.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Terapia de Alvo Molecular , Receptor Muscarínico M1/metabolismo , Regulação Alostérica , Animais , Descoberta de Drogas , Humanos , Agonistas Muscarínicos/uso terapêutico , Receptor Muscarínico M1/agonistas
7.
Nat Chem Biol ; 16(3): 240-249, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080630

RESUMO

Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer's disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse effects including 'epileptic-like' seizures. We conclude that M1 mAChR ligands that promote receptor phosphorylation-dependent signaling would protect against cholinergic adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behavior relevant for the treatment of AD.


Assuntos
Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Colinérgicos/farmacologia , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
8.
Biochem J ; 475(4): 827-838, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29420254

RESUMO

The oxidation of methionine residues in proteins occurs during oxidative stress and can lead to an alteration in protein function. The enzyme methionine sulfoxide reductase (Msr) reverses this modification. Here, we characterise the mammalian enzyme Msr B3. There are two splice variants of this enzyme that differ only in their N-terminal signal sequence, which directs the protein to either the endoplasmic reticulum (ER) or mitochondria. We demonstrate here that the enzyme can complement a bacterial strain, which is dependent on methionine sulfoxide reduction for growth, that the purified recombinant protein is enzymatically active showing stereospecificity towards R-methionine sulfoxide, and identify the active site and two resolving cysteine residues. The enzyme is efficiently recycled by thioredoxin only in the presence of both resolving cysteine residues. These results show that for this isoform of Msrs, the reduction cycle most likely proceeds through a three-step process. This involves an initial sulfenylation of the active site thiol followed by the formation of an intrachain disulfide with a resolving thiol group and completed by the reduction of this disulfide by a thioredoxin-like protein to regenerate the active site thiol. Interestingly, the enzyme can also act as an oxidase catalysing the stereospecific formation of R-methionine sulfoxide. This result has important implications for the role of this enzyme in the reversible modification of ER and mitochondrial proteins.


Assuntos
Metionina Sulfóxido Redutases/genética , Estresse Oxidativo/genética , Oxigenases/genética , Proteínas Recombinantes/genética , Catálise , Domínio Catalítico , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Metionina Sulfóxido Redutases/química , Mitocôndrias/genética , Oxirredução , Oxigenases/química , Transporte Proteico/genética , Proteínas Recombinantes/química , Tiorredoxinas/química , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA