Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 668, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182703

RESUMO

The ß-Carboline FG-7142 is a partial inverse agonist at the benzodiazepine allosteric site on the GABA-A receptor that induces anxiogenic, proconvulsant, and appetite-reducing effects in many species, including humans. Seizure-kindling effects have been well studied, however anxiogenic properties are relatively unexplored. This study aimed to investigate concentration-dependent effects of FG-7142 on anxiety-like behaviour and fear responses in zebrafish (Danio rerio) using the open-field test (OF) and novel object approach test (NOA). A U-shaped distribution was found with maximal responses in increased immobility and reduced distance moved at 10 µM in the NOA but not the OF. Follow up experiments demonstrated a lack of effect in repeated OF testing and no changes in opercular movements. Furthermore, the effect of FG-7142 was reversed with ethanol treatment. These results suggest that FG-7142 elicits a 'freezing' response in zebrafish via the introduction of novelty, suggesting fear-induction. These findings indicate that FG-7142 may act as an agent to promote acute fear responses in zebrafish.


Assuntos
Perciformes , Peixe-Zebra , Humanos , Animais , Agonismo Inverso de Drogas , Ansiedade , Medo , Carbolinas/farmacologia
2.
Front Behav Neurosci ; 16: 1019368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688130

RESUMO

Aquatic species are capable of detecting infrasound (sub-20 Hz frequencies) which may be a source of anthropogenic pollution and have a detrimental impact on the environmental fitness of fish. Infrasound is generated by infrastructure, producing acoustic frequency peaks that are not discernible by humans. The presence of these frequencies may therefore impact the environmental wellbeing of aquatic laboratory animals, which are often housed in spaces adjacent to facilities producing infrasound. To investigate the potential impact of infrasound, we used wild-type zebrafish (Danio rerio) and exposed them to short periods of infrasound at either 5, 10, 15, or 20 Hz, or 0 Hz as a control group. A motion-tracking software system was used to monitor fish movement in an open field test and arena location, distance moved, and immobility were quantified. There was a significant effect of 15 Hz which caused the fish to spend more time away from the infrasound source. The 20 Hz group also spent significantly less time in the zone closest to the speaker. There were no differences in distance moved or immobility between infrasound and control groups. These findings demonstrate that 15 Hz infrasound has aversive effects on zebrafish, causing them to move away from the sound source. To enhance environmental enrichment and wellbeing of aquatic laboratory animals, sources of infrasound pollution should be investigated and mitigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA