Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 19(4): e12630, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31823470

RESUMO

Neurexin 1α mutations are strongly associated with neurodevelopmental disorders such as autism spectrum disorders and schizophrenia in humans. Studies using the Neurexin 1α knock-out mouse have showed behavioral abnormalities of relevance to these disorders and baseline deficits in excitatory synaptic function have been described. However, little is known about the effect of Neurexin 1α deletion on behavior during development. This study examined the effects of Neurexin 1α deletion on behavior across a range of developmental time points to determine whether potential abnormalities follow a developmental trajectory. Pups lacking Neurexin 1α emitted a reduced number of ultrasonic vocalizations early in development combined with a restricted repertoire of calls indicative of a loss in complexity in vocal production and showed delays in reaching certain developmental milestones. Behavioral testing showed that juvenile and adult male Neurexin 1α knock-out mice exhibited social deficits and increased levels of aggression, confirming previous findings. No increases in repetitive behaviors or deficits in motor learning or olfaction were seen. In conclusion, this research showed that Neurexin 1α deletion does result in social and communication deficits that follow a developmental trajectory. These are the first experimental data that associate a deletion of Neurexin 1α with alterations in behaviors relevant to autism spectrum disorder across development and highlight the importance of assessing the developmental trajectory in mouse models of neurodevelopmental disorders.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão de Célula Nervosa/genética , Transtornos do Neurodesenvolvimento/genética , Animais , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Comportamento Social
2.
Front Neurosci ; 10: 396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610074

RESUMO

Autism spectrum disorders (ASD) are characterized by a high degree of genetic heterogeneity. Genomic studies identified common pathological processes underlying the heterogeneous clinical manifestations of ASD, and transcriptome analyses revealed that gene networks involved in synapse development, neuronal activity, and immune function are deregulated in ASD. Mouse models provide unique tools to investigate the neurobiological basis of ASD; however, a comprehensive approach to identify transcriptional abnormalities in different ASD models has never been performed. Here we used two well-recognized ASD mouse models, BTBR T(+) Itpr3 (tf) /J (BTBR) and Engrailed-2 knockout (En2 (-/-)), to identify conserved ASD-related molecular signatures. En2 (-/-) mice bear a mutation within the EN2 transcription factor homeobox, while BTBR is an inbred strain with unknown genetic defects. Hippocampal RNA samples from BTBR, En2 (-/-) and respective control (C57Bl/6J and En2 (+/+)) adult mice were assessed for differential gene expression using microarrays. A total of 153 genes were similarly deregulated in the BTBR and En2 (-/-) hippocampus. Mouse phenotype and gene ontology enrichment analyses were performed on BTBR and En2 (-/-) hippocampal differentially expressed genes (DEGs). Pathways represented in both BTBR and En2 (-/-) hippocampal DEGs included abnormal behavioral response and chemokine/MAP kinase signaling. Genes involved in abnormal function of the immune system and abnormal synaptic transmission/seizures were significantly represented among BTBR and En2 (-/-) DEGs, respectively. Interestingly, both BTBR and En2 (-/-) hippocampal DEGs showed a significant enrichment of ASD and schizophrenia (SCZ)-associated genes. Specific gene sets were enriched in the two models: microglial genes were significantly enriched among BTBR DEGs, whereas GABAergic/glutamatergic postsynaptic genes, FMRP-interacting genes and epilepsy-related genes were significantly enriched among En2 (-/-) DEGs. Weighted correlation network analysis (WGCNA) performed on BTBR and En2 (-/-) hippocampal transcriptomes together identified six modules significantly enriched in ASD-related genes. Each of these modules showed a specific enrichment profile in neuronal and glial genes, as well as in genes associated to ASD comorbidities such as epilepsy and SCZ. Our data reveal significant transcriptional similarities and differences between the BTBR and En2 (-/-) hippocampus, indicating that transcriptome analysis of ASD mouse models may contribute to identify novel molecular targets for pharmacological studies.

3.
Behav Brain Res ; 251: 50-64, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22820233

RESUMO

Mutations in neurexin and neuroligin genes have been associated with neurodevelopmental disabilities including autism. Autism spectrum disorder is diagnosed by aberrant reciprocal social interactions, deficits in social communication, and repetitive, stereotyped patterns of behaviors, along with narrow restricted interests. Mouse models have been successfully used to study physiological and behavioral outcomes of mutations in the trans-synaptic neurexin-neuroligin complex. To further understand the behavioral consequences of Neuroligin2 (NLGN2) mutations, we assessed several behavioral phenotypes relevant to autism in neuroligin2 null (Nlgn2(-/-)), heterozygote (Nlgn2(+/-)), and wildtype (Nlgn2(+/+)) littermate control mice. Reduced breeding efficiency and high reactivity to handling was observed in Nlgn2(-/-) mice, resulting in low numbers of adult mice available for behavioral assessment. Consistent with previous findings, Nlgn2(-/-) mice displayed normal social behaviors, concomitant with reduced exploratory activity, impaired rotarod performance, and delays on several developmental milestones. No spontaneous stereotypies or repetitive behaviors were detected. Acoustic, tactile, and olfactory sensory information processing as well as sensorimotor gating were not affected. Nlgn2(-/-) pups isolated from mother and littermates emitted fewer ultrasonic vocalizations and spent less time calling than Nlgn2(+/+) littermate controls. The present findings add to the growing literature on the role of neurexins and neuroligins in physiology and behavior relevant to neurodevelopmental disorders.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Deficiências do Desenvolvimento/genética , Proteínas do Tecido Nervoso/genética , Comportamento Social , Vocalização Animal/fisiologia , Animais , Ansiedade/genética , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Habituação Psicofisiológica/fisiologia , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Fenótipo , Reflexo de Sobressalto/genética , Teste de Desempenho do Rota-Rod
4.
Front Behav Neurosci ; 6: 11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22454620

RESUMO

Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5-5 mg/kg, i.p.) on both emotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimental settings, named High Arousal (HA) and Low Arousal (LA) conditions. The two different experimental conditions influenced emotional reactivity independently of drug administration. Indeed, vehicle-treated rats exposed to the LA condition spent more time in the center of the arena than vehicle-treated rats exposed to the HA context. Conversely, the different arousal conditions did not affect the cognitive performances of vehicle-treated animals such as the capability to discriminate a spatial displacement of the objects or an object substitution. AM404 administration did not alter locomotor activity or emotional behavior of animals exposed to both environmental conditions. Interestingly, AM404 administration influenced the cognitive parameters depending on the level of emotional arousal: it impaired the capability of rats exposed to the HA condition to recognize a novel object while it did not induce any impairing effect in rats exposed to the LA condition. These findings suggest that drugs enhancing endocannabinoid signaling induce different effects on recognition memory performance depending on the level of emotional arousal induced by the environmental conditions.

6.
Autism Res ; 1(3): 147-58, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19360662

RESUMO

Neuroligin-3 is a member of the class of cell adhesion proteins that mediate synapse development and have been implicated in autism. Mice with the human R451C mutation (NL3), identical to the point mutation found in two brothers with autism spectrum disorders, were generated and phenotyped in multiple behavioral assays with face validity to the diagnostic symptoms of autism. No differences between NL3 and their wildtype (WT) littermate controls were detected on measures of juvenile reciprocal social interaction, adult social approach, cognitive abilities, and resistance to change in a spatial habit, findings which were replicated in several cohorts of males and females. Physical and procedural abilities were similar across genotypes on measures of general health, sensory abilities, sensorimotor gating, motor functions, and anxiety-related traits. Minor developmental differences were detected between NL3 and WT, including slightly different rates of somatic growth, slower righting reflexes at postnatal days 2-6, faster homing reflexes in females, and less vocalizations on postnatal day 8 in males. Significant differences in NL3 adults included somewhat longer latencies to fall from the rotarod, less vertical activity in the open field, and less acoustic startle to high decibel tones. The humanized R451C mutation in mice did not result in apparent autism-like phenotypes, but produced detectable functional consequences that may be interpreted in terms of physical development and/or reduced sensitivity to stimuli.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Knockout , Mutação Puntual/genética , Comportamento Social
7.
Behav Pharmacol ; 17(5-6): 517-24, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940773

RESUMO

We examined long-term behavioural effects of neonatal lesions of the cholinergic basal forebrain obtained by intracerebroventricular injections of 192 IgG saporin (192 IgG-Sap). Five-month-old Wistar male rats (injected with 192 IgG-Sap or phosphate-buffered saline on postnatal day 7) were tested using operant chambers with two nose-poking holes, delivering one food pellet immediately or five pellets after a delay. The length of delay progressively increased over days (from 0 to 100 s). When compared with controls, 192 IgG-Sap rats showed a slight preference for smaller immediate over larger delayed rewards, thus indicating elevated intolerance to delay (i.e. more impulsivity). Sibling animals were tested in a computerized radial maze (baited vs. nonbaited arm procedure). 192 IgG-Sap rats appeared slower than controls in accomplishing the task. The neonatal 192 IgG-Sap lesion did not alter cortical levels of serotonin and/or its metabolites, but induced a marked cortical cholinergic loss. Our data suggest that a prolonged basal forebrain cholinergic hypofunction produces (i) an impairment in cognitive performances that is detectable only when highly complex tasks are used; (ii) a slight enhancement of the impulsive behavioural profile. This animal model may thus be useful to investigate some cognitive deficits and other secondary symptoms seen in Alzheimer's disease.


Assuntos
Córtex Cerebral/fisiopatologia , Fibras Colinérgicas/fisiologia , Comportamento Impulsivo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/fisiopatologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais , Córtex Cerebral/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Colinérgicos , Fibras Colinérgicas/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Imunotoxinas , Comportamento Impulsivo/induzido quimicamente , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , N-Glicosil Hidrolases , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA