Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Contemp Clin Trials Commun ; 11: 107-112, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30035242

RESUMO

BACKGROUND: Randomized clinical trials are the gold standard for evaluating healthcare interventions and, more generally, add to the medical knowledge related to the treatment, diagnosis and prevention of diseases and conditions. Recent literature continues to identify health informatics methods that can help improve study efficiency throughout the life cycle of a clinical trial. Electronic medical record (EMR) data provides a mechanism to facilitate clinical trial research during the study planning and execution phases, and ultimately, can be utilized to enhance recruitment. The Department of Veterans Affairs (VA) has a strong history of clinical and epidemiological research with over four decades of data collected from Veterans it has served nationwide. The VA Informatics and Computing Infrastructure (VINCI) provides VA research investigators with a nationwide view of high-value VA patient data. Within VA, the Cooperative Studies Program (CSP) Network of Dedicated Enrollment Sites (NODES) is a consortium of nine sites that are part of an embedded clinical research infrastructure intended to provide systematic site-level solutions to issues that arise during the conduct of VA CSP clinical research. This paper describes the collaboration initiated by the Salt Lake City (SLC) node site to bring informatics and clinical trials together to enhance study planning and recruitment within the VA. METHODS: The SLC VA Medical Center physically houses both VINCI and a node site and the co-location of these two groups prompted a natural collaboration on both a local and national level. One of the functions of the SLC NODES is to enhance recruitment and promote the success of CSP projects. VINCI supports these efforts by providing VA researchers access to potential population pools. VINCI can provide 1) feasibility data during study planning, and 2) active patient lists during recruitment. The process for CSP study teams to utilize these services involves regulatory documentation, development of queries, revisions to the initial data request, and ongoing communications with several key study personnel including the requesting research team, study statisticians, and VINCI data managers. RESULTS: The early efforts of SLC NODES and VINCI aimed to provide patient lists exclusively to the SLC CSP study teams for the following purposes: 1) increasing recruitment for trials that were struggling to meet their respective enrollment goals, and 2) decreasing the time required by study coordinators to complete chart review activities. This effort was expanded to include multiple CSP sites and studies. To date, SLC NODES has facilitated the delivery of these VINCI services to nine active CSP studies. CONCLUSION: The ability of clinical trial study teams to successfully plan and execute their respective trials is contingent upon their proficiency in obtaining data that will help them efficiently and effectively recruit and enroll eligible participants. This collaboration demonstrates that the utilization of a model that partners two distinct entities, with similar objectives, was effective in the provision of feasibility and patient lists to clinical trial study teams and facilitation of clinical trial research within a large, integrated healthcare system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26807078

RESUMO

OBJECTIVES: We introduce and evaluate a new, easily accessible tool using a common statistical analysis and business analytics software suite, SAS, which can be programmed to remove specific protected health information (PHI) from a text document. Removal of PHI is important because the quantity of text documents used for research with natural language processing (NLP) is increasing. When using existing data for research, an investigator must remove all PHI not needed for the research to comply with human subjects' right to privacy. This process is similar, but not identical, to de-identification of a given set of documents. MATERIALS AND METHODS: PHI Hunter removes PHI from free-form text. It is a set of rules to identify and remove patterns in text. PHI Hunter was applied to 473 Department of Veterans Affairs (VA) text documents randomly drawn from a research corpus stored as unstructured text in VA files. RESULTS: PHI Hunter performed well with PHI in the form of identification numbers such as Social Security numbers, phone numbers, and medical record numbers. The most commonly missed PHI items were names and locations. Incorrect removal of information occurred with text that looked like identification numbers. DISCUSSION: PHI Hunter fills a niche role that is related to but not equal to the role of de-identification tools. It gives research staff a tool to reasonably increase patient privacy. It performs well for highly sensitive PHI categories that are rarely used in research, but still shows possible areas for improvement. More development for patterns of text and linked demographic tables from electronic health records (EHRs) would improve the program so that more precise identifiable information can be removed. CONCLUSIONS: PHI Hunter is an accessible tool that can flexibly remove PHI not needed for research. If it can be tailored to the specific data set via linked demographic tables, its performance will improve in each new document set.


Assuntos
Pesquisa Biomédica/organização & administração , Confidencialidade , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Humanos , Software , Estados Unidos , United States Department of Veterans Affairs
3.
Am J Pathol ; 176(4): 2029-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20133814

RESUMO

EphB4 receptor tyrosine kinase and its cognate ligand EphrinB2 regulate induction and maturation of newly forming vessels. Inhibition of their interaction arrests angiogenesis, vessel maturation, and pericyte recruitment. In addition, EphB4 is expressed in the vast majority of epithelial cancers and provides a survival advantage to most. Here, we describe two anti-EphB4 monoclonal antibodies that inhibit tumor angiogenesis and tumor growth by two distinct pathways. MAb131 binds to fibronectin-like domain 1 and induces degradation of human EphB4, but not murine EphB4. MAb131 inhibits human endothelial tube formation in vitro and growth of human tumors expressing EphB4 in vivo. In contrast, MAb47 targets fibronectin-like domain 2 of both human and murine EphB4 and does not alter EphB4 receptor levels, but inhibits angiogenesis and growth of both EphB4-positive and EphB4-negative tumors in a mouse s.c. xenograft model. Combination of MAb47 and bevacizumab enhances the antitumor activity and induces tumor regression. Indeed, humanized antibodies hAb47 and hAb131 showed similar affinity for EphB4 and retained efficacy in the inhibition of primary tumor development and experimental metastasis.


Assuntos
Anticorpos Monoclonais/química , Neoplasias/metabolismo , Neovascularização Patológica , Receptor EphB4/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Bevacizumab , Endocitose , Fibronectinas/química , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/patologia , Estrutura Terciária de Proteína , Receptor EphB4/química , Resultado do Tratamento
4.
Blood ; 115(4): 887-95, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19965636

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) infection is essential to the development of Kaposi sarcoma (KS). Notch signaling is also known to play a pivotal role in KS cell survival and lytic phase entrance of KSHV. In the current study, we sought to determine whether KSHV regulates Notch components. KSHV-infected lymphatic endothelial cells showed induction of receptors Notch3 and Notch4, Notch ligands Dll4 and Jagged1, and activated Notch receptors in contrast to uninfected lymphatic endothelial cells. In addition, KSHV induced the expression of endothelial precursor cell marker (CD133) and mural cell markers (calponin, desmin, and smooth muscle alpha actin), suggesting dedifferentiation and trans-differentiation. Overexpression of latency proteins (LANA, vFLIP) and lytic phase proteins (RTA, vGPCR, viral interleukin-6) further supported the direct regulatory capacity of KSHV viral proteins to induce Notch receptors (Notch2, Notch3), ligands (Dll1, Dll4, Jagged1), downstream targets (Hey, Hes), and endothelial precursor CD133. Targeting Notch pathway with gamma-secretase inhibitor and a decoy protein in the form of soluble Dll4 inhibited growth of KSHV-transformed endothelial cell line. Soluble Dll4 was also highly active in vivo against KS tumor xenograft. It inhibited tumor cell growth, induced tumor cell death, and reduced vessel perfusion. Soluble Dll4 is thus a candidate for clinical investigation.


Assuntos
Células Endoteliais , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8 , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/fisiologia , Transformação Celular Viral , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptor Notch3 , Receptor Notch4 , Receptores Notch/genética , Proteínas Serrate-Jagged , Transfecção , Transplante Heterólogo , Artérias Umbilicais/citologia , Veias Umbilicais/citologia , Latência Viral/fisiologia
5.
Cancer Res ; 69(9): 3736-45, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19366806

RESUMO

The receptor tyrosine kinase EphB2 is expressed by colon progenitor cells; however, only 39% of colorectal tumors express EphB2 and expression levels decline with disease progression. Conversely, EphB4 is absent in normal colon but is expressed in all 102 colorectal cancer specimens analyzed, and its expression level correlates with higher tumor stage and grade. Both EphB4 and EphB2 are regulated by the Wnt pathway, the activation of which is critically required for the progression of colorectal cancer. Differential usage of transcriptional coactivator cyclic AMP-responsive element binding protein-binding protein (CBP) over p300 by the Wnt/beta-catenin pathway is known to suppress differentiation and increase proliferation. We show that the beta-catenin-CBP complex induces EphB4 and represses EphB2, in contrast to the beta-catenin-p300 complex. Gain of EphB4 provides survival advantage to tumor cells and resistance to innate tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Knockdown of EphB4 inhibits tumor growth and metastases. Our work is the first to show that EphB4 is preferentially induced in colorectal cancer, in contrast to EphB2, whereby tumor cells acquire a survival advantage.


Assuntos
Neoplasias Colorretais/enzimologia , Receptor EphB2/biossíntese , Receptor EphB4/biossíntese , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Imunofluorescência , Células HT29 , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Receptor EphB4/genética , Transfecção , Transplante Heterólogo , beta Catenina/metabolismo
6.
Blood ; 113(1): 254-63, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18836096

RESUMO

Kaposi sarcoma (KS) is associated with human herpesvirus (HHV)-8 and is dependent on the induction of vascular endothelial growth factors (VEGFs). VEGF regulates genes that provide arterial or venous identity to endothelial cells, such as the induction of EphrinB2, which phenotypically defines arterial endothelial cells and pericytes, and represses EphB4, which defines venous endothelial cells. We conducted a comprehensive analysis of the Eph receptor tyrosine kinases to determine which members are expressed and therefore contribute to KS pathogenesis. We demonstrated limited Eph/Ephrin expression; notably, the only ligand highly expressed is EphrinB2. We next studied the biologic effects of blocking EphrinB2 using the extracellular domain of EphB4 fused with human serum albumin (sEphB4-HSA). sEphB4-HSA inhibited migration and invasion of the KS cells in vitro in response to various growth factors. Finally, we determined the biologic effects of combining sEphB4-HSA and an antibody to VEGF. sEphB4-HSA was more active than the VEGF antibody, and combination of the 2 had at least additive activity. sEphB4-HSA reduced blood vessel density, pericyte recruitment, vessel perfusion, and increased hypoxia, with an associated increase in VEGF and DLL4 expression. The combination of sEphB4-HSA and VEGF antibody is a rational treatment combination for further investigation.


Assuntos
Efrina-B2/antagonistas & inibidores , Efrina-B2/metabolismo , Receptor EphB4/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Sarcoma de Kaposi/fisiopatologia , Neoplasias Vasculares/fisiopatologia , Animais , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Efrinas/genética , Efrinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor EphB4/genética , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Proteínas Recombinantes de Fusão/genética , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/metabolismo , Albumina Sérica/genética , Artérias Umbilicais/citologia , Veias Umbilicais/citologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Neoplasias Vasculares/tratamento farmacológico , Neoplasias Vasculares/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Blood ; 112(5): 1720-9, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18559979

RESUMO

The importance of Notch signaling pathway in the regulation of vascular development and angiogenesis is suggested by the expression of Notch receptors and ligands in vascular endothelial cells (ECs) and the observed vascular phenotypes in mutants of Notch receptors or ligands, especially Dll4. DLL4 is specifically expressed in arterial ECs during development, and haplo-insufficiency is embryonically lethal in mice. To address the role of Dll4 in vascular development, we produced mDll4 conditionally overexpressed transgenic mice that were crossed with constitutive recombinase cre lines. Double transgenic embryos displayed grossly enlarged dorsal aortae (DA) and died before embryonic day 10.5 (E10.5), showing a variable degree of premature arteriovenous fusion. Veins displayed ectopic expression of arterial markers. Other defects included reduced vascular sprouting, EC proliferation, and migration. mDll4 overexpression also inhibited VEGF signaling and increased fibronectin accumulation around the vessels. In vitro and in vivo studies of DLL4-FL (Dll4-full-length) in ECs recapitulate many of the mDll4 transgenics findings, including decreased tube formation, reduced vascular branching, fewer vessels, increased pericyte recruitment, and increased fibronectin expression. These results establish the role of Dll4 in arterial identity determination, and regulation of angiogenesis subject to dose and location.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Artérias/anormalidades , Artérias/embriologia , Proteínas de Ligação ao Cálcio , Movimento Celular , Células Cultivadas , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Coração Fetal/anormalidades , Coração Fetal/embriologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Gravidez , Receptores Notch/fisiologia , Transfecção , Veias/anormalidades , Veias/embriologia
8.
Blood ; 109(11): 4753-60, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17311993

RESUMO

Vascular development is dependent on various growth factors and certain modifiers critical for providing arterial or venous identity, interaction with the surrounding stroma and tissues, hierarchic network formation, and recruitment of pericytes. Notch receptors and ligands (Jagged and Delta-like) play a critical role in this process in addition to VEGF. Dll4 is one of the Notch ligands that regulates arterial specification and maturation events. In the current study, we have shown that loss of function by either targeted allele deletion or use of a soluble form of Dll4 extracellular domain leads to inhibition of Notch signaling, resulting in increased vascular proliferation but defective maturation. Newly forming vessels have thin caliber, a markedly reduced vessel lumen, markedly reduced pericyte recruitment, and deficient vascular perfusion. sDll4 similarly induced defective vascular response in tumor implants leading to reduced tumor growth. Interference with Dll4-Notch signaling may be particularly desirable in tumors that have highly induced Dll4-Notch pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Neovascularização Patológica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Separação Celular , Colágeno/metabolismo , Combinação de Medicamentos , Endotélio Vascular/citologia , Humanos , Laminina/metabolismo , Ligantes , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Perfusão , Proteoglicanas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
9.
Am J Pathol ; 169(1): 279-93, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16816380

RESUMO

EphB4, a member of the largest family of receptor tyrosine kinases, is normally expressed on endothelial and neuronal cells. Although aberrant expression of EphB4 has been reported in several human tumors, including breast cancer, its functional significance is not understood. We report here that EphB4 is expressed in 7 of 12 (58%) human breast cancer specimens and 4 of 4 (100%) breast tumor cell lines examined. Overexpression of EphB4 in breast cancer cells was driven by gene amplification and by the erbB family of receptors via activation of Janus tyrosine kinase-signal transducers and activators of transcription and protein kinase B. The aberrantly expressed receptor was phosphorylated by its natural ligand, EphrinB2, and signaled via the protein kinase B pathway. Targeted knockdown of EphB4 expression by small interference RNA (and antisense oligodeoxynucleotides (ODNs)) led to dose-dependent reduction in cell survival, increased apoptosis, and sensitization to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Antisense ODN-mediated EphB4 knockdown resulted in reduced tumor growth in a murine tumor xenograft model. Antisense ODN-treated tumors were 72% smaller than control tumors at 6 weeks, with an 86% reduction in proliferating cells, 15-fold increase in apoptosis, and 44% reduction in tumor microvasculature. Our data indicate that biologically active EphB4 functions as a survival factor in breast cancer and is a novel target for therapy.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor EphB4/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , DNA Antissenso , Efrina-B2/metabolismo , Feminino , Amplificação de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Camundongos , Invasividade Neoplásica , Proteínas Oncogênicas v-erbB/metabolismo , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Receptor EphB4/genética , Ligante Indutor de Apoptose Relacionado a TNF , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
10.
Int J Dev Biol ; 48(2-3): 249-70, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15272390

RESUMO

Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian / reptile ancestors to go onto the land. Overlapping scales and production of beta-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode which maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis and the production of "chicken teeth". In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented.


Assuntos
Evolução Biológica , Crescimento e Desenvolvimento , Tegumento Comum/embriologia , Vertebrados/embriologia , Vertebrados/crescimento & desenvolvimento , Animais , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA