Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684238

RESUMO

OBJECTIVE: Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN: Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS: Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION: Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.

2.
Gut ; 72(6): 1155-1166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36261293

RESUMO

OBJECTIVE: Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN: Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS: PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS: Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Presenilina-1/genética , Transdução de Sinais/fisiologia , Neoplasias Colorretais/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo
3.
Gastroenterology ; 160(3): 925-928.e4, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075345
4.
Eur J Pharmacol ; 885: 173463, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835668

RESUMO

Endogenous opioid system is involved in the maintenance of the intestinal homeostasis. Recently, we proved that stimulation of opioid receptors using P-317, a cyclic morphiceptin analog, resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the effect of P-317 during colitis and colitis-associated colorectal cancer in mice. Colitis was induced by addition of dextran sodium sulfate (DSS) into drinking water. Colitis-associated colorectal cancer was induced by a single intraperitoneal injection of azoxymethane (AOM) and subsequent addition of DSS into drinking water (week 2, 5, 8). During macroscopic damage evaluation the samples were collected and used for biochemical (MPO activity assay), molecular (qPCR and western blot) and histological studies. In experimental colitis, P-317 induced an anti-inflammatory response as indicated by macroscopic and microscopic scores. In the colitis-associated colorectal cancer model, a significant difference in colorectal tumor development was observed between vehicle- and P-317-treated mice. P-317 decreased the total number of colonic tumors and inhibited MPO activity. Hematoxylin and eosin staining confirmed anti-tumor activity of P-317. The expression of TNF-α was decreased in P-317-treated mice as compared to the vehicle-treated group. P-317 decreased proliferation as well as ß-catenin expression in tumors. P-317, a mixed MOP and KOP receptor agonist, induced an anti-inflammatory response in experimental colitis and decreased tumor development in colitis-associated colorectal cancer in mice.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Endorfinas/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Azoximetano , Carcinógenos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/etiologia , Sulfato de Dextrana , Endorfinas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA