Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(21): 211101, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598651

RESUMO

We demonstrate that short-period stars orbiting around the supermassive black hole in our Galactic center can successfully be used to probe the gravitational theory in a strong regime. We use 19 years of observations of the two best measured short-period stars orbiting our Galactic center to constrain a hypothetical fifth force that arises in various scenarios motivated by the development of a unification theory or in some models of dark matter and dark energy. No deviation from general relativity is reported and the fifth force strength is restricted to an upper 95% confidence limit of |α|<0.016 at a length scale of λ=150 astronomical units. We also derive a 95% confidence upper limit on a linear drift of the argument of periastron of the short-period star S0-2 of |ω[over ˙]_{S0-2}|<1.6×10^{-3} rad/yr, which can be used to constrain various gravitational and astrophysical theories. This analysis provides the first fully self-consistent test of the gravitational theory using orbital dynamic in a strong gravitational regime, that of a supermassive black hole. A sensitivity analysis for future measurements is also presented.

2.
Science ; 338(6103): 84-7, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23042888

RESUMO

Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

3.
Nature ; 425(6961): 934-7, 2003 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-14586462

RESUMO

Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

4.
Nature ; 419(6908): 694-6, 2002 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12384690

RESUMO

Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.

5.
Photosynth Res ; 63(2): 171-82, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-16228427

RESUMO

The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, F(max), of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio F(max)(-DCMU)/F(max)(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed.

6.
Biophys J ; 76(4): 2238-48, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10096919

RESUMO

The quenching of chlorophyll fluorescence by triplets in solubilized trimeric light harvesting complexes was analyzed by comparative pump-probe experiments that monitor with weak 2-ns probe pulses the fluorescence yield and changes of optical density, DeltaOD, induced by 2-ns pump pulses. By using a special array for the measurement of the probe fluorescence (Schödel R., F. Hillman, T. Schrötter, K.-D. Irrgang, J. Voight, and G. Biophys. J. 71:3370-3380) the emission caused by the pump pulses could be drastically reduced so that even at highest pump pulse intensities, IP, no significant interference with the signal due to the probe pulse was observed. The data obtained reveal: a) at a fixed time delay of 50 ns between pump and probe pulse the fluorescence yield of the latter drastically decreased with increasing IP, b) the recovery of the fluorescence yield in the microseconds time domain exhibits kinetics which are dependent on IP, c) DeltaOD at 507 nm induced by the pump pulse and monitored by the probe pulse with a delay of 50 ns (reflecting carotenoid triplets) increases with IP without reaching a saturation level at highest IP values, d) an analogous feature is observed for the bleaching at 675 nm but it becomes significant only at very high IP values, e) the relaxation of DeltaOD at 507 nm occurs via a monophasic kinetics at all IP values whereas DeltaOD at 675 nm measured under the same conditions is characterized by a biphasic kinetics with tau values of about 1 microseconds and 7-9 microseconds. The latter corresponds with the monoexponential decay kinetics of DeltaOD at 507 nm. Based on a Stern-Volmer plot, the time-dependent fluorescence quenching is compared with the relaxation kinetics of triplets. It is shown that the fluorescence data can be consistently described by a quenching due to triplets.


Assuntos
Clorofila/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Fenômenos Biofísicos , Biofísica , Clorofila/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica , Solubilidade , Espectrometria de Fluorescência , Spinacia oleracea
7.
Biophys J ; 75(6): 3143-53, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9826635

RESUMO

In the present study the rate of triplet transfer from chlorophyll to carotenoids in solubilized LHCII was investigated by flash spectroscopy using laser pulses of approximately 2 ns for both pump and probe. Special attention has been paid to calibration of the experimental setup and to avoid saturation effects. Carotenoid triplets were identified by the pronounced positive peak at approximately 507 nm in the triplet-singlet difference spectra. DeltaOD (507 nm) exhibits a monoexponential relaxation kinetics with characteristic lifetimes of 2-9 micros (depending on the oxygen content) that was found to be independent of the pump pulse intensity. The rise of DeltaOD (507 nm) was resolved via a pump probe technique where an optical delay of up to 20 ns was used. A thorough analysis of these experimental data leads to the conclusion that the kinetics of carotenoid triplet formation in solubilized LHCII is almost entirely limited by the lifetime of the excited singlet state of chlorophyll but neither by the pulse width nor by the rate constant of triplet-triplet transfer. Within the experimental error the rate constant of triplet-triplet transfer from chlorophyll to carotenoids was estimated to be kTT > (0.5 ns)-1. This value exceeds all data reported so far by at least one order of magnitude. The implications of this finding are briefly discussed.


Assuntos
Carotenoides/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Fenômenos Biofísicos , Biofísica , Carotenoides/efeitos da radiação , Clorofila/química , Clorofila/efeitos da radiação , Cinética , Complexos de Proteínas Captadores de Luz , Modelos Químicos , Óptica e Fotônica/instrumentação , Fotoquímica , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Solubilidade , Espectrofotometria , Spinacia oleracea
8.
Biophys J ; 71(6): 3370-80, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8968606

RESUMO

Relative fluorescence yield, phi F, and transmittance, T, were measured in solubilized light-harvesting complex II (LHCII) as a function of photon density, Ip, of monochromatic 645-nm laser pulses (duration: approximately 2.5 ns). Special efforts were made in constructing an optical set-up that allows the accurate determination of the fluorescence from an area of constant Ip, phi F(Ip) starts to decline at approximately 10(14) and drops to values below 0.01% at maximum Ip (approximately 10(19) photons cm-2 pulse-1). T(Ip) decreases only slightly at photon densities of approximately 10(15) but increases steeply at values of > 10(17) photons cm-2 pulse-1. The interpretation of the phi F(Ip) data using the saturation limit of Mauzerall's multiple hit model leads to a unit size of about 10-15 chlorophyll molecules. One interpretation is to attribute this result to a very fast exciton-exciton annihilation of multiple excited states generated within this small domain. Alternatively, based on the assumption that delocalized cluster states within the monomeric/trimeric subunit of LHCII exist, the results can be consistently described by a kinetic model comprising ground, monoexcitonic, and biexcitonic states of clusters and a triplet state that is quenched by carotenoids in LHCII. Within the framework of this model the annihilation of multiple excitations is explained as ultrafast radiationless relaxation of higher excited cluster states. Comparative measurements in diluted acetonic Chl a solution are consistently described by the depletion of the ground state, taking the absorption cross section at the used wavelength.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Clorofila/química , Clorofila/metabolismo , Clorofila A , Cinética , Lasers , Complexos de Proteínas Captadores de Luz , Modelos Químicos , Fótons , Soluções , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Spinacia oleracea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA