Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
2.
Int J Stem Cells ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281813

RESUMO

Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.

3.
Cell Stem Cell ; 31(1): 127-147.e9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141611

RESUMO

Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Camundongos , Ratos , Animais , Suínos , Macaca fascicularis/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Reprogramação Celular , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular , Mamíferos/metabolismo
4.
NPJ Parkinsons Dis ; 9(1): 166, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110400

RESUMO

The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.

6.
Elife ; 122023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963071

RESUMO

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular , Feto/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047520

RESUMO

Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Tetraploidia , Diploide , Células-Tronco Embrionárias , Diferenciação Celular/genética , Poliploidia , Mamíferos
9.
Mol Cells ; 46(4): 209-218, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36852435

RESUMO

In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Reprogramação Celular , Células-Tronco Embrionárias Murinas , Epigênese Genética
10.
Redox Biol ; 59: 102597, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599286

RESUMO

Tauopathies are a major type of proteinopathies underlying neurodegenerative diseases. Mutations in the tau-encoding MAPT-gene lead to hereditary cases of frontotemporal lobar degeneration (FTLD)-tau, which span a wide phenotypic and pathological spectrum. Some of these mutations, such as the N279K mutation, result in a shift of the physiological 3R/4R ratio towards the more aggregation prone 4R isoform. Other mutations such as V337M cause a decrease in the in vitro affinity of tau to microtubules and a reduced ability to promote microtubule assembly. Whether both mutations address similar downstream signalling cascades remains unclear but is important for potential rescue strategies. Here, we developed a novel and optimised forward programming protocol for the rapid and highly efficient production of pure cultures of glutamatergic cortical neurons from hiPSCs. We apply this protocol to delineate mechanisms of neurodegeneration in an FTLD-tau hiPSC-model consisting of MAPTN279K- or MAPTV337M-mutants and wild-type or isogenic controls. The resulting cortical neurons express MAPT-genotype-dependent dominant proteome clusters regulating apoptosis, ROS homeostasis and mitochondrial function. Related pathways are significantly upregulated in MAPTN279K neurons but not in MAPTV337M neurons or controls. Live cell imaging demonstrates that both MAPT mutations affect excitability of membranes as reflected in spontaneous and stimulus evoked calcium signals when compared to controls, albeit more pronounced in MAPTN279K neurons. These spontaneous calcium oscillations in MAPTN279K neurons triggered mitochondrial hyperpolarisation and fission leading to mitochondrial ROS production, but also ROS production through NOX2 acting together to induce cell death. Importantly, we found that these mechanisms are MAPT mutation-specific and were observed in MAPTN279K neurons, but not in MAPTV337M neurons, supporting a pathological role of the 4R tau isoform in redox disbalance and highlighting MAPT-mutation specific clinicopathological-genetic correlations, which may inform rescue strategies in different MAPT mutations.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Espécies Reativas de Oxigênio/metabolismo , Demência Frontotemporal/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Neurônios/metabolismo , Mutação , Genótipo , Isoformas de Proteínas/metabolismo
11.
Sci Adv ; 8(44): eabl9583, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332016

RESUMO

Two fundamental elements of pre-implantation embryogenesis are cells' intrinsic self-organization program and their developmental plasticity, which allows embryos to compensate for alterations in cell position and number; yet, these elements are still poorly understood. To be able to decipher these features, we established culture conditions that enable the two fates of blastocysts' extraembryonic lineages-the primitive endoderm and the trophectoderm-to coexist. This plasticity emerges following the mechanisms of the first lineage segregation in the mouse embryo, and it manifests as an extended potential for extraembryonic chimerism during the pre-implantation embryogenesis. Moreover, this shared state enables robust assembly into higher-order blastocyst-like structures, thus combining both the cell fate plasticity and self-organization features of the early extraembryonic lineages.

12.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251998

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Assuntos
Microglia , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Macrófagos , Neurônios
13.
Nucleic Acids Res ; 50(18): 10311-10327, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36130732

RESUMO

Pioneer transcription factors are proteins that induce cellular identity transitions by binding to inaccessible regions of DNA in nuclear chromatin. They contribute to chromatin opening and recruit other factors to regulatory DNA elements. The structural features and dynamics modulating their interaction with nucleosomes are still unresolved. From a combination of experiments and molecular simulations, we reveal here how the pioneer factor and master regulator of pluripotency, Oct4, interprets and enhances nucleosome structural flexibility. The magnitude of Oct4's impact on nucleosome dynamics depends on the binding site position and the mobility of the unstructured tails of nucleosomal histone proteins. Oct4 uses both its DNA binding domains to propagate and stabilize open nucleosome conformations, one for specific sequence recognition and the other for nonspecific interactions with nearby regions of DNA. Our findings provide a structural basis for the versatility of transcription factors in engaging with nucleosomes and have implications for understanding how pioneer factors induce chromatin dynamics.


Assuntos
Nucleossomos , Fator 3 de Transcrição de Octâmero/metabolismo , Cromatina/genética , Histonas/metabolismo , Nucleossomos/genética , Fatores de Transcrição/metabolismo
14.
Cells ; 11(14)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883684

RESUMO

The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/ß1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.


Assuntos
Colestase , Células Endoteliais , Animais , Colestase/metabolismo , Cirrose Hepática/metabolismo , Organoides/metabolismo
15.
Stem Cell Res ; 62: 102826, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667217

RESUMO

An induced pluripotent stem cell (hiPSC) line (MPIi008-A) was generated from fibroblasts of a 1-year-old male patient with Denys-Drash syndrome using lentiviral delivery of reprogramming factors OCT4, SOX2, KLF4 and c-MYC. The MPIi008-A iPSC line exhibited typical iPSC morphology and normal karyotype, expressed pluripotent stem cell markers, and showed developmental potential to differentiate into derivatives of all three germ layers in vivo. The hiPSC line harbours a heterozygous missense mutation (R394L) in exon 9 of the WT1 gene.


Assuntos
Síndrome de Denys-Drash , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Síndrome de Denys-Drash/metabolismo , Fibroblastos/metabolismo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Mutação
16.
Elife ; 112022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35621159

RESUMO

The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2.


Assuntos
Cromatina , Células-Tronco Pluripotentes , Animais , Cromatina/metabolismo , Redes Reguladoras de Genes , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica
17.
Sci Rep ; 12(1): 5551, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365729

RESUMO

In recent years, 3D cell culture has been gaining a more widespread following across many fields of biology. Tissue clearing enables optical analysis of intact 3D samples and investigation of molecular and structural mechanisms by homogenizing the refractive indices of tissues to make them nearly transparent. Here, we describe and quantify that common clearing solutions including benzyl alcohol/benzyl benzoate (BABB), PEG-associated solvent system (PEGASOS), immunolabeling-enabled imaging of solvent-cleared organs (iDISCO), clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC), and ScaleS4 alter the emission spectra of Alexa Fluor fluorophores and fluorescent dyes. Clearing modifies not only the emitted light intensity but also alters the absorption and emission peaks, at times to several tens of nanometers. The resulting shifts depend on the interplay of solvent, fluorophore, and the presence of cells. For biological applications, this increases the risk for unexpected channel crosstalk, as filter sets are usually not optimized for altered fluorophore emission spectra in clearing solutions. This becomes especially problematic in high throughput/high content campaigns, which often rely on multiband excitation to increase acquisition speed. Consequently, researchers relying on clearing in quantitative multiband excitation experiments should crosscheck their fluorescent signal after clearing in order to inform the proper selection of filter sets and fluorophores for analysis.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional , Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/química , Imageamento Tridimensional/métodos , Ionóforos , Solventes
18.
Stem Cell Reports ; 17(4): 789-803, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334213

RESUMO

Several studies have pointed to retinal involvement in COVID-19, yet many questions remain regarding the ability of SARS-CoV-2 to infect and replicate in retinal cells and its effects on the retina. Here, we have used human pluripotent stem cell-derived retinal organoids to study retinal infection by SARS-CoV-2. Indeed, SARS-CoV-2 can infect and replicate in retinal organoids, as it is shown to infect different retinal lineages, such as retinal ganglion cells and photoreceptors. SARS-CoV-2 infection of retinal organoids also induces the expression of several inflammatory genes, such as interleukin 33, a gene associated with acute COVID-19 and retinal degeneration. Finally, we show that the use of antibodies to block ACE2 significantly reduces SARS-CoV-2 infection of retinal organoids, indicating that SARS-CoV-2 infects retinal cells in an ACE2-dependent manner. These results suggest a retinal involvement in COVID-19 and emphasize the need to monitor retinal pathologies as potential sequelae of "long COVID."


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , COVID-19/complicações , Humanos , Organoides/metabolismo , Retina , Células Ganglionares da Retina , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
19.
Sci Adv ; 8(7): eabe4375, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171666

RESUMO

Oct4 collaborates primarily with other transcriptional factors or coregulators to maintain pluripotency. However, how Oct4 exerts its function is still unclear. Here, we show that the Oct4 linker interface mediates competing yet balanced Oct4 protein interactions that are crucial for maintaining pluripotency. Oct4 linker mutant embryonic stem cells (ESCs) show decreased expression of self-renewal genes and increased expression of differentiation genes, resulting in impaired ESC self-renewal and early embryonic development. The linker mutation interrupts the balanced Oct4 interactome. In mutant ESCs, the interaction between Oct4 and Klf5 is decreased. In contrast, interactions between Oct4 and Cbx1, Ctr9, and Cdc73 are increased, disrupting the epigenetic state of ESCs. Control of the expression level of Klf5, Cbx1, or Cdc73 rebalances the Oct4 interactome and rescues the pluripotency of linker mutant ESCs, indicating that such factors interact with Oct4 competitively. Thus, we provide previously unidentified molecular insights into how Oct4 maintains pluripotency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA