Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Exp Hematol ; 117: 24-42.e7, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368558

RESUMO

Differentiation of hematopoietic stem and progenitor cells to terminally differentiated immune cells is accompanied by large-scale remodeling of the DNA methylation landscape. Although significant insights into the molecular mechanisms of hematopoietic tissue regeneration were derived from mouse models, profiling of DNA methylation has been hampered by high cost or low resolution using available methods. The recent development of the Infinium Mouse Methylation BeadChip (MMBC) array facilitates methylation profiling of the mouse genome at a single CpG resolution at affordable cost. We extended the RnBeads package to provide a computational framework for the analysis of MMBC data. This framework was applied to a newly generated reference map of mouse hematopoiesis encompassing nine different cell types. Analysis of dynamically regulated CpG sites showed progressive and unidirectional DNA methylation changes from hematopoietic stem and progenitor cells to differentiated hematopoietic cells and allowed the identification of lineage- and cell type-specific DNA methylation programs. Comparison with previously published catalogs of cis-regulatory elements (CREs) revealed 12,856 novel putative CREs that were dynamically regulated by DNA methylation (mdCREs). These mdCREs were predominantly associated with patterns of cell type-specific DNA hypomethylation and could be identified as epigenetic control regions regulating the expression of key hematopoietic genes during differentiation. In summary, we established an analysis pipeline for MMBC data sets and provide a DNA methylation atlas of mouse hematopoiesis. This resource allowed us to identify novel putative CREs involved in hematopoiesis and will serve as a platform to study epigenetic regulation of normal and malignant hematopoiesis.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Diferenciação Celular/genética
2.
Int J Cancer ; 152(6): 1226-1242, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36408934

RESUMO

The accumulation of myeloid cells, particularly tumor-associated macrophages (TAMs), characterizes the tumor microenvironment (TME) of many solid cancers, including breast cancer. Compared to healthy tissue-resident macrophages, TAMs acquire distinct transcriptomes and tumor-promoting functions by largely unknown mechanisms. Here, we hypothesize the involvement of TME signaling and subsequent epigenetic reprogramming of TAMs. Using the 4T1 mouse model of triple-negative breast cancer, we demonstrate that the presence of cancer cells significantly alters the DNA methylation landscape of macrophages and, to a lesser extent, bone marrow-derived monocytes (BMDMs). TAM methylomes, dissected into BMDM-originating and TAM-specific epigenetic programs, implicated transcription factors (TFs) and signaling pathways involved in TAM reprogramming, correlated with cancer-specific gene expression patterns. Utilizing published single-cell gene expression data, we linked microenvironmentally-derived signals to the cancer-specific DNA methylation landscape of TAMs. These integrative analyses highlighted the role of altered cytokine production in the TME (eg, TGF-ß, IFN-γ and CSF1) on the induction of specific TFs (eg, FOSL2, STAT1 and RUNX3) responsible for the epigenetic reprogramming of TAMs. DNA methylation deconvolution identified a TAM-specific signature associated with the identified signaling pathways and TFs, corresponding with severe tumor grade and poor prognosis of breast cancer patients. Similarly, immunosuppressive TAM functions were identified, such as induction of the immune inhibitory receptor-ligand PD-L1 by DNA hypomethylation of Cd274. Collectively, these results provide strong evidence that the epigenetic landscapes of macrophages and monocytes are perturbed by the presence of breast cancer, pointing to molecular mechanisms of TAM reprogramming, impacting patient outcomes.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/genética , Prognóstico , Macrófagos Associados a Tumor , Fatores de Transcrição , Metilação de DNA , Microambiente Tumoral/genética
3.
Int J Cancer ; 152(5): 1025-1035, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305646

RESUMO

Noninvasive detection of aberrant DNA methylation could provide invaluable biomarkers for earlier detection of triple-negative breast cancer (TNBC) which could help clinicians with easier and more efficient treatment options. We evaluated genome-wide DNA methylation data derived from TNBC and normal breast tissues, peripheral blood of TNBC cases and controls and reference samples of sorted blood and mammary cells. Differentially methylated regions (DMRs) between TNBC and normal breast tissues were stringently selected, verified and externally validated. A machine-learning algorithm was applied to select the top DMRs, which then were evaluated on plasma-derived circulating cell-free DNA (cfDNA) samples of TNBC patients and healthy controls. We identified 23 DMRs accounting for the methylation profile of blood cells and reference mammary cells and then selected six top DMRs for cfDNA analysis. We quantified un-/methylated copies of these DMRs by droplet digital PCR analysis in a plasma test set from TNBC patients and healthy controls and confirmed our findings obtained on tissues. Differential cfDNA methylation was confirmed in an independent validation set of plasma samples. A methylation score combining signatures of the top three DMRs overlapping with the SPAG6, LINC10606 and TBCD/ZNF750 genes had the best capability to discriminate TNBC patients from controls (AUC = 0.78 in the test set and AUC = 0.74 in validation set). Our findings demonstrate the usefulness of cfDNA-based methylation signatures as noninvasive liquid biopsy markers for the diagnosis of TNBC.


Assuntos
Ácidos Nucleicos Livres , Neoplasias de Mama Triplo Negativas , Humanos , Metilação de DNA , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/genética , DNA , Ácidos Nucleicos Livres/genética , Marcadores Genéticos , Biópsia Líquida , Proteínas Associadas aos Microtúbulos/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
4.
JHEP Rep ; 3(6): 100354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704004

RESUMO

BACKGROUND & AIMS: Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. METHODS: Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTßR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. RESULTS: We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTßR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. CONCLUSIONS: Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. LAY SUMMARY: Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection.

5.
Blood Adv ; 5(14): 2901-2908, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34297046

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative therapy for most children with juvenile myelomonocytic leukemia (JMML). Novel therapies controlling the disorder prior to HSCT are needed. We conducted a phase 2, multicenter, open-label study to evaluate the safety and antileukemic activity of azacitidine monotherapy prior to HSCT in newly diagnosed JMML patients. Eighteen patients enrolled from September 2015 to November 2017 were treated with azacitidine (75 mg/m2) administered IV once daily on days 1 to 7 of a 28-day cycle. The primary end point was the number of patients with clinical complete remission (cCR) or clinical partial remission (cPR) after 3 cycles of therapy. Pharmacokinetics, genome-wide DNA-methylation levels, and variant allele frequencies of leukemia-specific index mutations were also analyzed. Sixteen patients completed 3 cycles and 5 patients completed 6 cycles. After 3 cycles, 11 patients (61%) were in cPR and 7 (39%) had progressive disease. Six of 16 patients (38%) who needed platelet transfusions were transfusion-free after 3 cycles. All 7 patients with intermediate- or low-methylation signatures in genome-wide DNA-methylation studies achieved cPR. Seventeen patients received HSCT; 14 (82%) were leukemia-free at a median follow-up of 23.8 months (range, 7.0-39.3 months) after HSCT. Azacitidine was well tolerated and plasma concentration--time profiles were similar to observed profiles in adults. In conclusion, azacitidine monotherapy is a suitable option for children with newly diagnosed JMML. Although long-term safety and efficacy remain to be fully elucidated in this population, these data demonstrate that azacitidine provides valuable clinical benefit to JMML patients prior to HSCT. This trial was registered at www.clinicaltrials.gov as #NCT02447666.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mielomonocítica Juvenil , Adulto , Azacitidina/efeitos adversos , Criança , Metilação de DNA , Humanos , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Mutação
6.
Nat Cancer ; 2(5): 527-544, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122024

RESUMO

Somatic mutations in DNA methyltransferase 3A (DNMT3A) are among the most frequent alterations in clonal hematopoiesis (CH) and acute myeloid leukemia (AML), with a hotspot in exon 23 at arginine 882 (DNMT3AR882). Here, we demonstrate that DNMT3AR882H-dependent CH and AML cells are specifically susceptible to the hypomethylating agent azacytidine (AZA). Addition of AZA to chemotherapy prolonged AML survival solely in individuals with DNMT3AR882 mutations, suggesting its potential as a predictive marker for AZA response. AML and CH mouse models confirmed AZA susceptibility specifically in DNMT3AR882H-expressing cells. Hematopoietic stem cells (HSCs) and progenitor cells expressing DNMT3AR882H exhibited cell autonomous viral mimicry response as a result of focal DNA hypomethylation at retrotransposon sequences. Administration of AZA boosted hypomethylation of retrotransposons specifically in DNMT3AR882H-expressing cells and maintained elevated levels of canonical interferon-stimulated genes (ISGs), thus leading to suppressed protein translation and increased apoptosis.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Mutação
7.
Epigenetics ; 16(9): 933-939, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33100132

RESUMO

Targeted analysis of DNA methylation patterns based on bisulfite-treated genomic DNA (BT-DNA) is considered as a gold-standard for epigenetic biomarker development. Existing software tools facilitate primer design, primer quality control or visualization of primer localization. However, high-throughput design of primers for BT-DNA amplification is hampered by limits in throughput and functionality of existing tools, requiring users to repeatedly perform specific tasks manually. Consequently, the design of PCR primers for BT-DNA remains a tedious and time-consuming process. To bridge this gap, we developed AmpliconDesign, a webserver providing a scalable and user-friendly platform for the design and analysis of targeted DNA methylation studies based on BT-DNA, e.g. deep amplicon bisulfite sequencing (ampBS-seq) or EpiTYPER MassArray. Core functionality of the web server includes high-throughput primer design and binding site validation based on in silico bisulfite-converted DNA sequences, prediction of fragmentation patterns for EpiTYPER MassArray, an interactive quality control as well as a streamlined analysis workflow for ampBS-seq.


Assuntos
Metilação de DNA , Sulfitos , Epigenômica , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Software
8.
Bioinformatics ; 36(22-23): 5524-5525, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346800

RESUMO

MOTIVATION: Whole-genome bisulfite sequencing (WGBS) measures DNA methylation at base pair resolution resulting in large bedGraph like coverage files. Current options for processing such files are hindered by discrepancies in file format specification, speed, and memory requirements. RESULTS: We developed methrix, an R package, which provides a toolset for systematic analysis of large datasets. Core functionality of the package includes a comprehensive bedGraph or similar tab-separated text file reader-which summarizes methylation calls based on annotated reference indices, infers and collapses strands and handles uncovered reference CpG sites while facilitating a flexible input file format specification. Additional optimized functions for quality control filtering, subsetting and visualization allow user-friendly and effective processing of WGBS results. Easy integration with tools for differentially methylated region (DMR) calling and annotation further eases the analysis of genome-wide methylation data. Overall, methrix enriches established WGBS workflows by bringing together computational efficiency and versatile functionality. AVAILABILITY AND IMPLEMENTATION: Methrix is implemented as an R package, made available under MIT license at https://github.com/CompEpigen/methrix and can be installed from the Bioconductor repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Clin Cancer Res ; 27(1): 158-168, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139265

RESUMO

PURPOSE: Known clinical and genetic markers have limitations in predicting disease course and outcome in juvenile myelomonocytic leukemia (JMML). DNA methylation patterns in JMML have correlated with outcome across multiple studies, suggesting it as a biomarker to improve patient stratification. However, standardized approaches to classify JMML on the basis of DNA methylation patterns are lacking. We, therefore, sought to define an international consensus for DNA methylation subgroups in JMML and develop classification methods for clinical implementation. EXPERIMENTAL DESIGN: Published DNA methylation data from 255 patients with JMML were used to develop and internally validate a classifier model. Accuracy across platforms (EPIC-arrays and MethylSeq) was tested using a technical validation cohort (32 patients). The suitability of both methods for single-patient classification was demonstrated using an independent cohort (47 patients). RESULTS: Analysis of pooled, published data established three DNA methylation subgroups as a de facto standard. Unfavorable prognostic parameters (PTPN11 mutation, elevated fetal hemoglobin, and older age) were significantly enriched in the high methylation (HM) subgroup. A classifier was then developed that predicted subgroups with 98% accuracy across different technological platforms. Applying the classifier to an independent validation cohort confirmed an association of HM with secondary mutations, high relapse incidence, and inferior overall survival (OS), while the low methylation subgroup was associated with a favorable disease course. Multivariable analysis established DNA methylation subgroups as the only significant factor predicting OS. CONCLUSIONS: This study provides an international consensus definition for DNA methylation subgroups in JMML. We developed and validated methods which will facilitate the design of risk-stratified clinical trials in JMML.


Assuntos
Consenso , Metilação de DNA , Leucemia Mielomonocítica Juvenil/mortalidade , Adolescente , Criança , Pré-Escolar , Ilhas de CpG/genética , Conjuntos de Dados como Assunto , Epigênese Genética , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Leucemia Mielomonocítica Juvenil/genética , Masculino , Prognóstico , Medição de Risco/métodos , Medição de Risco/normas
10.
Sci Rep ; 10(1): 12066, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694513

RESUMO

Cytosine DNA bases can be methylated by DNA methyltransferases and subsequently oxidized by TET proteins. The resulting 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) are considered demethylation intermediates as well as stable epigenetic marks. To dissect the contributions of these cytosine modifying enzymes, we generated combinations of Tet knockout (KO) embryonic stem cells (ESCs) and systematically measured protein and DNA modification levels at the transition from naive to primed pluripotency. Whereas the increase of genomic 5-methylcytosine (5mC) levels during exit from pluripotency correlated with an upregulation of the de novo DNA methyltransferases DNMT3A and DNMT3B, the subsequent oxidation steps turned out to be far more complex. The strong increase of oxidized cytosine bases (5hmC, 5fC, and 5caC) was accompanied by a drop in TET2 levels, yet the analysis of KO cells suggested that TET2 is responsible for most 5fC formation. The comparison of modified cytosine and enzyme levels in Tet KO cells revealed distinct and differentiation-dependent contributions of TET1 and TET2 to 5hmC and 5fC formation arguing against a processive mechanism of 5mC oxidation. The apparent independent steps of 5hmC and 5fC formation suggest yet to be identified mechanisms regulating TET activity that may constitute another layer of epigenetic regulation.


Assuntos
Diferenciação Celular , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas/genética , Animais , Sistemas CRISPR-Cas , Cromatografia Líquida de Alta Pressão , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epigênese Genética , Camundongos , Camundongos Knockout , Proteoma , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , Espectrometria de Massas em Tandem
11.
Nat Commun ; 8(1): 2126, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259247

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of early childhood characterized by mutations activating RAS signaling. Established clinical and genetic markers fail to fully recapitulate the clinical and biological heterogeneity of this disease. Here we report DNA methylome analysis and mutation profiling of 167 JMML samples. We identify three JMML subgroups with unique molecular and clinical characteristics. The high methylation group (HM) is characterized by somatic PTPN11 mutations and poor clinical outcome. The low methylation group is enriched for somatic NRAS and CBL mutations, as well as for Noonan patients, and has a good prognosis. The intermediate methylation group (IM) shows enrichment for monosomy 7 and somatic KRAS mutations. Hypermethylation is associated with repressed chromatin, genes regulated by RAS signaling, frequent co-occurrence of RAS pathway mutations and upregulation of DNMT1 and DNMT3B, suggesting a link between activation of the DNA methylation machinery and mutational patterns in JMML.


Assuntos
Metilação de DNA , Leucemia Mielomonocítica Juvenil/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Antineoplásicos/uso terapêutico , Biópsia , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Análise Mutacional de DNA , Epigenômica , Feminino , Regulação Leucêmica da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Leucemia Mielomonocítica Juvenil/mortalidade , Leucemia Mielomonocítica Juvenil/patologia , Leucemia Mielomonocítica Juvenil/terapia , Masculino , Mutação , Síndrome de Noonan/patologia , Prognóstico , Estudos Prospectivos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-cbl , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação para Cima , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA