Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 30, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263136

RESUMO

BACKGROUND: MEK inhibitors (MEKi) were shown to be clinically insufficiently effective in patients suffering from BRAF wild-type (BRAF WT) melanoma, even if the MAPK pathway was constitutively activated due to mutations in NRAS or NF-1. Thus, novel combinations are needed to increase the efficacy and duration of response to MEKi in BRAF WT melanoma. Disulfiram and its metabolite diethyldithiocarbamate are known to have antitumor effects related to cellular stress, and induction of endoplasmic reticulum (ER) stress was found to synergize with MEK inhibitors in NRAS-mutated melanoma cells. Therefore, we investigated the combination of both therapeutics to test their effects on BRAF-WT melanoma cells and compared them with monotherapy using the MEKi trametinib. METHODS: The effects of combined therapy with disulfiram or its metabolite diethyldithiocarbamate and the MEKi trametinib were evaluated in a series of BRAF-WT melanoma cell lines by measuring cell viability and apoptosis induction. Cytotoxicity was additionally assessed in 3D spheroids, ex vivo melanoma slice cultures, and in vivo xenograft mouse models. The response of melanoma cells to treatment was studied at the RNA and protein levels to decipher the mode of action. Intracellular and intratumoral copper measurements were performed to investigate the role of copper ions in the antitumor cytotoxicity of disulfiram and its combination with the MEKi. RESULTS: Diethyldithiocarbamate enhanced trametinib-induced cytotoxicity and apoptosis induction in 2D and 3D melanoma culture models. Mechanistically, copper-dependent induction of oxidative stress and ER stress led to Janus kinase (JNK)-mediated apoptosis in melanoma cells. This mechanism was also detectable in patient-derived xenograft melanoma models and resulted in a significantly improved therapeutic effect compared to monotherapy with the MEKi trametinib. CONCLUSIONS: Disulfiram and its metabolite represent an attractive pharmaceutical approach to induce ER stress in melanoma cells that potentiates the antitumor effect of MEK inhibition and may be an interesting candidate for combination therapy of BRAF WT melanoma.


Assuntos
Dissulfiram , Melanoma , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf , Cobre , Ditiocarb , Modelos Animais de Doenças , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Circ Res ; 132(7): e96-e113, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36891903

RESUMO

BACKGROUND: Platelets can infiltrate ischemic myocardium and are increasingly recognized as critical regulators of inflammatory processes during myocardial ischemia and reperfusion (I/R). Platelets contain a broad repertoire of microRNAs (miRNAs), which, under certain conditions such as myocardial ischemia, may be transferred to surrounding cells or released into the microenvironment. Recent studies could demonstrate that platelets contribute substantially to the circulating miRNA pool holding the potential for so far undiscovered regulatory functions. The present study aimed to determine the role of platelet-derived miRNAs in myocardial injury and repair following myocardial I/R. METHODS: In vivo model of myocardial I/R, multimodal in vivo and ex vivo imaging approaches (light-sheet fluorescence microscopy, positron emission tomography and magnetic resonance imaging, speckle-tracking echocardiography) of myocardial inflammation and remodeling, and next-generation deep sequencing analysis of platelet miRNA expression. RESULTS: In mice with a megakaryocyte/platelet-specific knockout of pre-miRNA processing ribonuclease Dicer, the present study discloses a key role of platelet-derived miRNAs in the tightly regulated cellular processes orchestrating left ventricular remodeling after myocardial I/R following transient left coronary artery ligation. Disruption of the miRNA processing machinery in platelets by deletion of Dicer resulted in increased myocardial inflammation, impaired angiogenesis, and accelerated development of cardiac fibrosis, culminating in an increased infarct size by d7 that persisted through d28 of myocardial I/R. Worsened cardiac remodeling after myocardial infarction in mice with a platelet-specific Dicer deletion resulted in an increased fibrotic scar formation and distinguishably increased perfusion defect of the apical and anterolateral wall at day 28 post-myocardial infarction. Altogether, these observations culminated in an impaired left ventricular function and hampered long-term cardiac recovery after experimental myocardial infarction and reperfusion therapy. Treatment with the P2Y12 (P2Y purinoceptor 12) antagonist ticagrelor completely reversed increased myocardial damage and adverse cardiac remodeling observed in DicerPf4∆/Pf4∆ mice. CONCLUSIONS: The present study discloses a critical role of platelet-derived miRNA in myocardial inflammation and structural remodeling processes following myocardial I/R.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Plaquetas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Remodelação Ventricular , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia Miocárdica/metabolismo , Infarto do Miocárdio/patologia , Doença da Artéria Coronariana/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
4.
Theranostics ; 11(16): 7700-7714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335959

RESUMO

CD4+ T helper cells are capable of mediating long-term antitumoral immune responses. We developed a combined immunotherapy (COMBO) using tumor antigen-specific T helper 1 cells (Tag-Th1), dual PD-L1/LAG-3 immune checkpoint blockade, and a low-dose total body irradiation (TBI) of 2 Gy, that was highly efficient in controlling the tumor burden of non-immunogenic RIP1-Tag2 mice with late-stage endogenous pancreatic islet carcinomas. In this study, we aimed to explore the impact of 2 Gy TBI on the treatment efficacy and the underlying mechanisms to boost CD4+ T cell-based immunotherapies. Methods: Heavily progressed RIP1-Tag2 mice underwent COMBO treatment and their survival was compared to a cohort without 2 Gy TBI. Positron emission tomography/computed tomography (PET/CT) with radiolabeled anti-CD3 monoclonal antibodies and flow cytometry were applied to investigate 2 Gy TBI-induced alterations in the biodistribution of endogenous T cells of healthy C3H mice. Migration and homing properties of Cy5-labeled adoptive Tag-Th1 cells were monitored by optical imaging and flow cytometric analyses in C3H and tumor-bearing RIP1-Tag2 mice. Splenectomy or sham-surgery of late-stage RIP1-Tag2 mice was performed before onset of COMBO treatment to elucidate the impact of the spleen on the therapy response. Results: First, we determined a significant longer survival of RIP1-Tag2 mice and an increased CD4+ T cell tumor infiltrate when 2 Gy TBI was applied in addition to Tag-Th1 cell PD-L1/LAG-3 treatment. In non-tumor-bearing C3H mice, TBI induced a moderate host lymphodepletion and a tumor antigen-independent accumulation of Tag-Th1 cells in lymphoid and non-lymphoid organs. In RIP1-Tag2, we found increased numbers of effector memory-like Tag-Th1 and endogenous CD4+ T cells in the pancreatic tumor tissue after TBI, accompanied by a tumor-specific Th1-driven immune response. Furthermore, the spleen negatively regulated T cell effector function by upregulation PD-1/LAG-3/TIM-3 immune checkpoints, providing a further rationale for this combined treatment approach. Conclusion: Low-dose TBI represents a powerful tool to foster CD4+ T cell-based cancer immunotherapies by favoring Th1-driven antitumoral immunity. As TBI is a clinically approved and well-established technique it might be an ideal addition for adoptive cell therapy with CD4+ T cells in the clinical setting.


Assuntos
Imunoterapia/métodos , Células Th1/metabolismo , Irradiação Corporal Total/métodos , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Neoplasias , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Feminino , Imunidade/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C3H , Imagem Óptica , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Células Th1/imunologia , Distribuição Tecidual , Proteína do Gene 3 de Ativação de Linfócitos
5.
Nat Commun ; 11(1): 1335, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165639

RESUMO

Immune checkpoint blockade (ICB)-based or natural cancer immune responses largely eliminate tumours. Yet, they require additional mechanisms to arrest those cancer cells that are not rejected. Cytokine-induced senescence (CIS) can stably arrest cancer cells, suggesting that interferon-dependent induction of senescence-inducing cell cycle regulators is needed to control those cancer cells that escape from killing. Here we report in two different cancers sensitive to T cell-mediated rejection, that deletion of the senescence-inducing cell cycle regulators p16Ink4a/p19Arf (Cdkn2a) or p21Cip1 (Cdkn1a) in the tumour cells abrogates both the natural and the ICB-induced cancer immune control. Also in humans, melanoma metastases that progressed rapidly during ICB have losses of senescence-inducing genes and amplifications of senescence inhibitors. Metastatic cells also resist CIS. Such genetic and functional alterations are infrequent in metastatic melanomas regressing during ICB. Thus, activation of tumour-intrinsic, senescence-inducing cell cycle regulators is required to stably arrest cancer cells that escape from eradication.


Assuntos
Ciclo Celular , Senescência Celular , Interferons/metabolismo , Melanoma/imunologia , Melanoma/patologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Imunoterapia , Antígeno Ki-67/metabolismo , Linfonodos/patologia , Melanoma/terapia , Melanoma/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/metabolismo , Análise de Sobrevida , Carga Tumoral
6.
Theranostics ; 10(2): 925-937, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903160

RESUMO

Purpose: Cancer immunotherapy depends on a systemic immune response, but the basic underlying mechanisms are still largely unknown. Despite the very successful and widespread use of checkpoint inhibitors in the clinic, the majority of cancer patients do not benefit from this type of treatment. In this translational study, we investigated whether noninvasive in vivo positron emission tomography (PET) imaging using 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) is capable of detecting immunotherapy-associated metabolic changes in the primary and secondary lymphoid organs and whether this detection enables the prediction of a successful anti-cancer immune response. Methods: RIP1-Tag2 mice with progressed endogenous insular cell carcinomas underwent a combined cancer immunotherapy consisting of CD4+ T cells plus monoclonal antibodies (mAbs) against programmed death ligand-1 (PD-L1) and lymphocyte activation gene-3 (LAG-3) or a sham treatment after radiation-mediated immune cell depletion. A second cohort of RIP1-Tag2 mice underwent exclusive checkpoint inhibitor therapy (CIT) using anti-PD-L1/LAG-3 mAbs or sham treatment without initial immune cell depletion to mimic the clinical situation. All mice were monitored by 18F-FDG-PET combined with anatomical magnetic resonance imaging (MRI). In addition, we retrospectively analyzed PET / computed tomography (CT) scans (PET/CT) regarding 18F-FDG uptake of CIT-treated metastatic melanoma patients in the spleen (n=23) and bone marrow (BM; n=20) as well as blood parameters (n=17-21). Results: RIP1-Tag2 mice with advanced insular cell carcinomas treated with combination immunotherapy exhibited significantly increased 18F-FDG uptake in the spleen compared to sham-treated mice. Histopathology of the spleens from treated mice revealed atrophy of the white pulp with fewer germinal centers and an expanded red pulp with hyperplasia of neutrophils than those of sham-treated mice. Immunohistochemistry and flow cytometry analyses of the spleens revealed a lower number of T cells and a higher number of neutrophils compared to those in the spleens of sham-treated mice. Flow cytometry of the BM showed enhanced activation of T cells following the treatment schemes that included checkpoint inhibitors. The ratio of 18F-FDG uptake at baseline to the uptake at follow-up in the spleens of exclusively CIT-treated RIP1-Tag2 mice was significantly enhanced, but the ratio was not enhanced in the spleens of the sham-treated littermates. Flow cytometry analysis confirmed a reduced number of T cells in the spleens of exclusively CIT-treated mice compared to that of sham-treated mice. A retrospective analysis of clinical 18F-FDG-PET/CT scans revealed enhanced 18F-FDG uptake in the spleens of some successfully CIT-treated patients with metastatic melanoma, but there were no significant differences between responders and non-responders. The analysis of the BM in clinical 18F-FDG-PET/CT scans with a computational segmentation tool revealed significantly higher baseline 18F-FDG uptake in patients who responded to CIT than in non-responders, and this relationship was independent of bone metastasis, even in the baseline scan. Conclusions: Thus, we are presenting the first translational study of solid tumors focusing on the metabolic patterns of primary and secondary lymphoid organs induced by the systemic immune response after CIT. We demonstrate that the widely available 18F-FDG-PET modality is an applicable translational tool that has high potential to stratify patients at an early time point.


Assuntos
Biomarcadores Tumorais/metabolismo , Fluordesoxiglucose F18/metabolismo , Imunoterapia/métodos , Tecido Linfoide/metabolismo , Melanoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Tecido Linfoide/diagnóstico por imagem , Melanoma/diagnóstico por imagem , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo , Estudos Retrospectivos , Resultado do Tratamento
7.
Carcinogenesis ; 40(2): 289-302, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30753335

RESUMO

Cancer treatment with adoptively transferred tumor-associated antigen-specific CD4+ T-helper cells is a promising immunotherapeutic approach. In the pancreatic cancer model RIP-Tag2, the intraperitoneal (i.p.) application of Tag-specific TH1 cells exhibited a profound antitumoral efficiency. We investigated, whether an intravenous (i.v.) application of Tag-TH1 cells induces an equivalent therapeutic effect. Adoptively transferred fluorescent Tag-TH1 cells revealed a pronounced homing to the tumors after either i.p. or i.v. transfer, and both routes induced an almost equivalent therapeutic effect as demonstrated by magnetic resonance imaging, blood glucose level course and histology. The i.v. administration of Tag-TH1 cells induced p16INK4-positive/Ki67-negative tumor senescence more efficiently than i.p. administration. Both routes replenish host CD4+ T cells by transferred T cells and recruitment of B and dendritic cells to the tumors while reducing CD8+ T cells and depleting macrophages. Both administration routes efficiently induced a similar antitumoral efficiency despite the pronounced senescence induction after i.v. administration. Thus, a combinatory i.v./i.p. injection of therapeutic cells might overcome limitations of the individual routes and improve therapeutic efficacy in solid tumors.


Assuntos
Antígenos de Neoplasias/imunologia , Senescência Celular/imunologia , Neoplasias/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Microambiente Tumoral/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Camundongos , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
8.
Nat Commun ; 8(1): 444, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874662

RESUMO

Many pathophysiological processes are associated with proliferation, migration or death of distinct cell populations. Monitoring specific cell types and their progeny in a non-invasive, longitudinal and quantitative manner is still challenging. Here we show a novel cell-tracking system that combines Cre/lox-assisted cell fate mapping with a thymidine kinase (sr39tk) reporter gene for cell detection by positron emission tomography (PET). We generate Rosa26-mT/sr39tk PET reporter mice and induce sr39tk expression in platelets, T lymphocytes or cardiomyocytes. As proof of concept, we demonstrate that our mouse model permits longitudinal PET imaging and quantification of T-cell homing during inflammation and cardiomyocyte viability after myocardial infarction. Moreover, Rosa26-mT/sr39tk mice are useful for whole-body characterization of transgenic Cre mice and to detect previously unknown Cre activity. We anticipate that the Cre-switchable PET reporter mice will be broadly applicable for non-invasive long-term tracking of selected cell populations in vivo.Non-invasive cell tracking is a powerful method to visualize cells in vivo under physiological and pathophysiological conditions. Here Thunemann et al. generate a mouse model for in vivo tracking and quantification of specific cell types by combining a PET reporter gene with Cre-dependent activation that can be exploited for any cell population for which a Cre mouse line is available.


Assuntos
Rastreamento de Células/métodos , Integrases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Recombinação Genética/genética , Animais , Fluordesoxiglucose F18 , Genes Reporter , Inflamação/patologia , Camundongos , Infarto do Miocárdio/patologia , Linfócitos T/imunologia , Timidina Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA