Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712109

RESUMO

Background: The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. Purpose: We sought to evaluate how the magnitude of radiation-induced gastrointestinal (GI) toxicity (RIGIT) depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). Methods: C57BL/6J mice were subjected to total abdominal irradiation (11-14 Gy single fraction) under conventional irradiation (low DPP and low MDR, CONV) and various combinations of DPP and MDR up to ultra-high-dose-rate (UHDR) beam conditions. The effects of DPP were evaluated for DPPs of 1-6 Gy while the total dose and MDR were kept constant; the effects of MDR were evaluated for the range 0.3- 1440 Gy/s while the total dose and DPP were kept constant. RIGIT was quantified in non-tumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. Results: Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to better sparing of regenerating crypts, with a more prominent effect seen at 12 and 14 Gy TAI. However, at fixed DPPs >4 Gy, similar sparing of crypts was demonstrated irrespective of MDR (from 0.3 to 1440 Gy/s). At a fixed high DPP of 4.7 Gy, survival was equivalently improved relative to CONV for all MDRs from 0.3 Gy/s to 104 Gy/s, but at a lower DPP of 0.93 Gy, increasing MDR produced a greater survival effect. We also confirmed that high DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. Conclusions: This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high DPP and UHDR appeared independently sufficient to produce FLASH sparing of GI toxicity, while isoeffective tumor response was maintained across all conditions.

2.
Med Phys ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507253

RESUMO

BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE: In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS: The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS: The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION: The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.

3.
ArXiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38495573

RESUMO

Background: Scintillation dosimetry has promising qualities for ultra-high dose rate (UHDR) radiotherapy (RT), but no system has shown compatibility with mean dose rates (DR-) above 100 Gy/s and doses per pulse (Dp) exceeding 1.5 Gy typical of UHDR (FLASH)-RT. The aim of this study was to characterize a novel scintillator dosimetry system with the potential of accommodating UHDRs. Methods and Materials: A thorough dosimetric characterization of the system was performed on an UHDR electron beamline. The system's response as a function of dose, DR-,Dp, and the pulse dose rate DRp was investigated, together with the system's dose sensitivity (signal per unit dose) as a function of dose history. The capabilities of the system for time-resolved dosimetric readout were also evaluated. Results: Within a tolerance of ±3%, the system exhibited dose linearity and was independent of DR- and Dp within the tested ranges of 1.8-1341 Gy/s and 0.005-7.68 Gy, respectively. A 6% reduction in the signal per unit dose was observed as DRp was increased from 8.9e4-1.8e6 Gy/s. Additionally, the dose delivered per integration window of the continuously sampling photodetector had to remain between 0.028 and 11.64 Gy to preserve a stable signal response per unit dose. The system accurately measured Dp of individual pulses delivered at up to 120 Hz. The day-to-day variation of the signal per unit dose at a reference setup varied by up to ±13% but remained consistent (<±2%) within each day of measurements and showed no signal loss as a function of dose history. Conclusions: With daily calibrations and DRp specific correction factors, the system reliably provides real-time, millisecond-resolved dosimetric measurements of pulsed conventional and UHDR beams from typical electron linacs, marking an important advancement in UHDR dosimetry and offering diverse applications to FLASH-RT and related fields.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38493902

RESUMO

PURPOSE: We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS: A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS: Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS: This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.

5.
Radiother Oncol ; 191: 110079, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163486

RESUMO

This prospective feasibility trial investigated pulmonary interstitial lymphography to identify thoracic primary nodal drainage (PND). A post-hoc analysis of nodal recurrences was compared with PND for patients with early-stage lung cancer; larger studies are needed to establish correlation. Exploratory PND-inclusive stereotactic ablative radiotherapy plans were assessed for dosimetric feasibility.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Linfografia , Estudos Prospectivos , Estudos de Viabilidade
6.
Med Phys ; 51(1): 494-508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37696271

RESUMO

Ion chambers are required for calibration and reference dosimetry applications in radiation therapy (RT). However, exposure of ion chambers in ultra-high dose rate (UHDR) conditions pertinent to FLASH-RT leads to severe saturation and ion recombination, which limits their performance and usability. The purpose of this study was to comprehensively evaluate a set of commonly used commercially available ion chambers in RT, all with different design characteristics, and use this information to produce a prototype ion chamber with improved performance in UHDR conditions as a first step toward ion chambers specific for FLASH-RT. The Advanced Markus and Exradin A10, A26, and A20 ion chambers were evaluated. The chambers were placed in a water tank, at a depth of 2 cm, and exposed to an UHDR electron beam at different pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings on an IntraOp Mobetron. Ion chamber responses were investigated for the various beam parameter settings to isolate their dependence on integrated dose, mean dose rate and instantaneous dose rate, dose-per-pulse (DPP), and their design features such as chamber type, bias voltage, and collection volume. Furthermore, a thin parallel-plate (TPP) prototype ion chamber with reduced collector plate separation and volume was constructed and equally evaluated as the other chambers. The charge collection efficiency of the investigated ion chambers decreased with increasing DPP, whereas the mean dose rate did not affect the response of the chambers (± 1%). The dependence of the chamber response on DPP was found to be solely related to the total dose within the pulse, and not on mean dose rate, PW, or instantaneous dose rate within the ranges investigated. The polarity correction factor (Ppol ) values of the TPP prototype, A10, and Advanced Markus chambers were found to be independent of DPP and dose rate (± 2%), while the A20 and A26 chambers yielded significantly larger variations and dependencies under the same conditions. Ion chamber performance evaluated under different irradiation conditions of an UHDR electron beam revealed a strong dependence on DPP and a negligible dependence on the mean and instantaneous dose rates. These results suggest that modifications to ion chambers design to improve their usability in UHDR beamlines should focus on minimizing DPP effects, with emphasis on optimizing the electric field strength, through the construction of smaller electrode separation and larger bias voltages. This was confirmed through the production and evaluation of a prototype ion chamber specifically designed with these characteristics.


Assuntos
Elétrons , Radiometria , Radiometria/métodos , Calibragem , Água
7.
Med Phys ; 51(3): 2311-2319, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37991111

RESUMO

BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE: In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS: OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS: The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS: We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.


Assuntos
Dosímetros de Radiação , Titânio , Doses de Radiação , Dosimetria Termoluminescente/métodos , Radiometria/métodos
8.
ArXiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808098

RESUMO

We conducted a multi-institutional audit of dosimetric variability between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3D-printed mouse phantom. A CT scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene ($~1.02 g/cm^3$) and polylactic acid ($~1.24 g/cm^3$) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid ($~0.64 g/cm^3$). Hounsfield units (HU) and densities were compared with the reference CT scan of the live mouse. Print-to-print reproducibility of the phantom was assessed. Three institutions were each provided a phantom, and each institution performed two replicates of irradiations at selected mouse anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. Compared to the reference CT scan, CT scans of the phantom demonstrated mass density differences of $0.10 g/cm^3$ for bone, $0.12 g/cm^3$ for lung, and $0.03 g/cm^3$ for soft tissue regions. Between phantoms, the difference in HU for soft tissue and bone was <10 HU from print to print. Lung exhibited the most variation (54 HU) but minimally affected dose distribution (<0.5% dose differences between phantoms). The mean difference between FLASH and CONV from the first replicate to the second decreased from 4.3% to 1.2%, and the mean difference from the prescribed dose decreased from 3.6% to 2.5% for CONV and 6.4% to 2.7% for FLASH. The framework presented here is promising for credentialing of multi-institutional studies of FLASH preclinical research to maximize the reproducibility of biological findings.

9.
Med Phys ; 50(11): 7252-7262, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37403570

RESUMO

BACKGROUND: Gafchromic film's unique properties of tissue-equivalence, dose-rate independence, and high spatial resolution make it an attractive choice for many dosimetric applications. However, complicated calibration processes and film handling limits its routine use. PURPOSE: We evaluated the performance of Gafchromic EBT3 film after irradiation under a variety of measurement conditions to identify aspects of film handling and analysis for simplified but robust film dosimetry. METHODS: The short- (from 5 min to 100 h) and long-term (months) film response was evaluated for clinically relevant doses of up to 50 Gy for accuracy in dose determination and relative dose distributions. The dependence of film response on film-read delay, film batch, scanner type, and beam energy was determined. RESULTS: Scanning the film within a 4-h window and using a standard 24-h calibration curve introduced a maximum error of 2% over a dose range of 1-40 Gy, with lower doses showing higher uncertainty in dose determination. Relative dose measurements demonstrated <1 mm difference in electron beam parameters such as depth of 50% of the maximum dose value (R50 ), independent of when the film was scanned after irradiation or the type of calibration curve used (batch-specific or time-specific calibration curve) if the same default scanner was used. Analysis of films exposed over a 5-year period showed that using the red channel led to the lowest variation in the measured net optical density values for different film batches, with doses >10 Gy having the lowest coefficient of variation (<1.7%). Using scanners of similar design produced netOD values within 3% after exposure to doses of 1-40 Gy. CONCLUSIONS: This is the first comprehensive evaluation of the temporal and batch dependence of Gafchromic EBT3 film evaluated on consolidated data over 8 years. The relative dosimetric measurements were insensitive to the type of calibration applied (batch- or time-specific) and in-depth time-dependent dosimetric signal behaviors can be established for film scanned outside of the recommended 16-24 h post-irradiation window. We generated guidelines based on our findings to simplify film handling and analysis and provide tabulated dose- and time-dependent correction factors to achieve this without reducing the accuracy of dose determination.


Assuntos
Dosimetria Fotográfica , Calibragem , Incerteza
10.
Int J Radiat Oncol Biol Phys ; 117(2): 482-492, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105403

RESUMO

PURPOSE: Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS: We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS: UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS: Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.


Assuntos
Elétrons , Neoplasias , Humanos , Radiometria/métodos , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
11.
Cancers (Basel) ; 15(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37046782

RESUMO

FLASH radiation therapy (RT) is a promising new paradigm in radiation oncology. However, a major question that remains is the robustness and reproducibility of the FLASH effect when different irradiators are used on animals or patients with different genetic backgrounds, diets, and microbiomes, all of which can influence the effects of radiation on normal tissues. To address questions of rigor and reproducibility across different centers, we analyzed independent data sets from The University of Texas MD Anderson Cancer Center and from Lausanne University (CHUV). Both centers investigated acute effects after total abdominal irradiation to C57BL/6 animals delivered by the FLASH Mobetron system. The two centers used similar beam parameters but otherwise conducted the studies independently. The FLASH-enabled animal survival and intestinal crypt regeneration after irradiation were comparable between the two centers. These findings, together with previously published data using a converted linear accelerator, show that a robust and reproducible FLASH effect can be induced as long as the same set of irradiation parameters are used.

12.
Int J Radiat Oncol Biol Phys ; 116(5): 1202-1217, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121362

RESUMO

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.


Assuntos
Credenciamento , Elétrons , Humanos , Instalações de Saúde , Posicionamento do Paciente , Tecnologia , Dosagem Radioterapêutica
13.
Med Phys ; 50(5): 3137-3147, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36621812

RESUMO

BACKGROUND: Linear accelerator (Linac) beam data commissioning and quality assurance (QA) play a vital role in accurate radiation treatment delivery and entail a large number of measurements using a variety of field sizes. How to optimize the effort in data acquisition while maintaining high quality of medical physics practice has been sought after. PURPOSE: We propose to model Linac beam data through implicit neural representation (NeRP) learning. The potential of the beam model in predicting beam data from sparse measurements and detecting data collection errors was evaluated, with the goal of using the beam model to verify beam data collection accuracy and simplify the commissioning and QA process. MATERIALS AND METHODS: NeRP models with continuous and differentiable functions parameterized by multilayer perceptrons (MLPs) were used to represent various beam data including percentage depth dose (PDD) and profiles of 6 MV beams with and without flattening filter. Prior knowledge of the beam data was embedded into the MLP network by learning the NeRP of a vendor-provided "golden" beam dataset. The prior-embedded network was then trained to fit clinical beam data collected at one field size and used to predict beam data at other field sizes. We evaluated the prediction accuracy by comparing network-predicted beam data to water tank measurements collected from 14 clinical Linacs. Beam datasets with intentionally introduced errors were used to investigate the potential use of the NeRP model for beam data verification, by evaluating the model performance when trained with erroneous beam data samples. RESULTS: Linac beam data predicted by the model agreed well with water tank measurements, with averaged Gamma passing rates (1%/1 mm passing criteria) higher than 95% and averaged mean absolute errors less than 0.6%. Beam data samples with measurement errors were revealed by inconsistent beam predictions between networks trained with correct versus erroneous data samples, characterized by a Gamma passing rate lower than 90%. CONCLUSION: A NeRP beam data modeling technique has been established for predicting beam characteristics from sparse measurements. The model provides a valuable tool to verify beam data collection accuracy and promises to simplify commissioning/QA processes by reducing the number of measurements without compromising the quality of medical physics service.


Assuntos
Radioterapia de Intensidade Modulada , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Água
14.
J Appl Clin Med Phys ; 24(2): e13891, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601691

RESUMO

PURPOSE: To investigate the usefulness and effectiveness of a dual beam-current transformer (BCTs) design to monitor and record the beam dosimetry output and energy of pulsed electron FLASH (eFLASH) beams in real-time, and to inform on the usefulness of this design for future eFLASH beam control. METHODS: Two BCTs are integrated into the head of a FLASH Mobetron system, one located after the primary scattering foil and the other downstream of the secondary scattering foil. The response of the BCTs was evaluated individually to monitor beam output as a function of dose, scattering conditions, and ability to capture physical beam parameters such as pulse width (PW), pulse repetition frequency (PRF), and dose per pulse (DPP), and in combination to determine beam energy using the ratio of the lower-to-upper BCT signal. RESULTS: A linear relationship was observed between the absorbed dose measured on Gafchromic film and the BCT signals for both the upper and lower BCT (R2  > 0.99). A linear relationship was also observed in the BCT signals as a function of the number of pulses delivered regardless of the PW, DPP, or PRF (R2  > 0.99). The lower-to-upper BCT ratio was found to correlate strongly with the energy of the eFLASH beam due to differential beam attenuation caused by the secondary scattering foil. The BCTs were also able to provide accurate information about the PW, PRF, energy, and DPP for each individual pulse delivered in real-time. CONCLUSION: The dual BCT system integrated within the FLASH Mobetron was shown to be a reliable monitoring system able to quantify accelerator performance and capture all essential physical beam parameters on a pulse-by-pulse basis, and the ratio between the two BCTs was strongly correlated with beam energy. The fast signal readout and processing enables the BCTs to provide real-time information on beam output and energy and is proposed as a system suitable for accurate beam monitoring and control of eFLASH beams.


Assuntos
Elétrons , Dosagem Radioterapêutica , Humanos , Radiometria
15.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146135

RESUMO

(1) Background: The Exradin W2 is a commercially available scintillator detector designed for reference and relative dosimetry in small fields. In this work, we investigated the performance of the W2 scintillator in a 10 MV flattening-filter-free photon beam and compared it to the performance of ion chambers designed for small field measurements. (2) Methods: We measured beam profiles and percent depth dose curves with each detector and investigated the linearity of each system based on dose per pulse (DPP) and pulse repetition frequency. (3) Results: We found excellent agreement between the W2 scintillator and the ion chambers for beam profiles and percent depth dose curves. Our results also showed that the two-voltage method of calculating the ion recombination correction factor was sufficient to correct for the ion recombination effect of ion chambers, even at the highest DPP. (4) Conclusions: These findings show that the W2 scintillator shows excellent agreement with ion chambers in high DPP conditions.


Assuntos
Fótons , Plásticos , Radiometria/métodos
16.
Radiother Oncol ; 175: 203-209, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030934

RESUMO

BACKGROUND AND PURPOSE: We describe a multicenter cross validation of ultra-high dose rate (UHDR) (>= 40 Gy/s) irradiation in order to bring a dosimetric consensus in absorbed dose to water. UHDR refers to dose rates over 100-1000 times those of conventional clinical beams. UHDR irradiations have been a topic of intense investigation as they have been reported to induce the FLASH effect in which normal tissues exhibit reduced toxicity relative to conventional dose rates. The need to establish optimal beam parameters capable of achieving the in vivo FLASH effect has become paramount. It is therefore necessary to validate and replicate dosimetry across multiple sites conducting UHDR studies with distinct beam configurations and experimental set-ups. MATERIALS AND METHODS: Using a custom cuboid phantom with a cylindrical cavity (5 mm diameter by 10.4 mm length) designed to contain three type of dosimeters (thermoluminescent dosimeters (TLDs), alanine pellets, and Gafchromic films), irradiations were conducted at expected doses of 7.5 to 16 Gy delivered at UHDR or conventional dose rates using various electron beams at the Radiation Oncology Departments of the CHUV in Lausanne, Switzerland and Stanford University, CA. RESULTS: Data obtained between replicate experiments for all dosimeters were in excellent agreement (±3%). In general, films and TLDs were in closer agreement with each other, while alanine provided the closest match between the expected and measured dose, with certain caveats related to absolute reference dose. CONCLUSION: In conclusion, successful cross-validation of different electron beams operating under different energies and configurations lays the foundation for establishing dosimetric consensus for UHDR irradiation studies, and, if widely implemented, decrease uncertainty between different sites investigating the mechanistic basis of the FLASH effect.


Assuntos
Elétrons , Radiometria , Humanos , Imagens de Fantasmas , Água , Alanina
17.
Phys Med Biol ; 67(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35803256

RESUMO

Small field dosimetry is significantly different from the dosimetry of broad beams due to loss of electron side scatter equilibrium, source occlusion, and effects related to the choice of detector. However, use of small fields is increasing with the increase in indications for intensity-modulated radiation therapy and stereotactic body radiation therapy, and thus the need for accurate dosimetry is ever more important. Here we propose to leverage machine learning (ML) strategies to reduce the uncertainties and increase the accuracy in determining small field output factors (OFs). Linac OFs from a Varian TrueBeam STx were calculated either by the treatment planning system (TPS) or measured with a W1 scintillator detector at various multi-leaf collimator (MLC) positions, jaw positions, and with and without contribution from leaf-end transmission. The fields were defined by the MLCs with the jaws at various positions. Field sizes between 5 and 100 mm were evaluated. Separate ML regression models were generated based on the TPS calculated or the measured datasets. Accurate predictions of small field OFs at different field sizes (FSs) were achieved independent of jaw and MLC position. A mean and maximum % relative error of 0.38 ± 0.39% and 3.62%, respectively, for the best-performing models based on the measured datasets were found. The prediction accuracy was independent of contribution from leaf-end transmission. Several ML models for predicting small field OFs were generated, validated, and tested. Incorporating these models into the dose calculation workflow could greatly increase the accuracy and robustness of dose calculations for any radiotherapy delivery technique that relies heavily on small fields.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Aprendizado de Máquina , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Incerteza
18.
Phys Med Biol ; 67(16)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35853442

RESUMO

Objective. Irradiation with ultra-high dose rates (>40 Gy s-1), also known as FLASH irradiation, has the potential to shift the paradigm of radiation therapy because of its reduced toxicity to normal tissues compared to that of conventional irradiations. The goal of this study was to (1) achieve FLASH irradiation conditions suitable for pre-clinicalin vitroandin vivobiology experiments using our synchrotron-based proton beamline and (2) commission the FLASH irradiation conditions achieved.Approach. To achieve these suitable FLASH conditions, we made a series of adaptations to our proton beamline, including modifying the spill length and size of accelerating cycles, repurposing the reference monitor for dose control, and expanding the field size with a custom double-scattering system. We performed the dosimetric commissioning with measurements using an Advanced Markus chamber and EBT-XD films as well as with Monte Carlo simulations.Main results. Through adaptations, we have successfully achieved FLASH irradiation conditions, with an average dose rate of up to 375 Gy s-1. The Advanced Markus chamber was shown to be appropriate for absolute dose calibration under our FLASH conditions with a recombination factor ranging from 1.002 to 1.006 because of the continuous nature of our synchrotron-based proton delivery within a spill. Additionally, the absolute dose measured using the Advanced Markus chamber and EBT-XD films agreed well, with average and maximum differences of 0.32% and 1.63%, respectively. We also performed a comprehensive temporal analysis for FLASH spills produced by our system, which helped us identify a unique relationship between the average dose rate and the dose in our FLASH irradiation.Significance.We have established a synchrotron-based proton FLASH irradiation platform with accurate and precise dosimetry that is suitable for pre-clinical biology experiments. The unique time structure of the FLASH irradiation produced by our synchrotron-based system may shed new light onto the mechanism behind the FLASH effect.


Assuntos
Terapia com Prótons , Prótons , Terapia com Prótons/métodos , Radiometria , Dosagem Radioterapêutica , Síncrotrons
19.
Cancers (Basel) ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267474

RESUMO

Recent preclinical evidence has shown that ionizing radiation given at an ultra-high dose rate (UHDR), also known as FLASH radiation therapy (FLASH-RT), can selectively reduce radiation injury to normal tissue while remaining isoeffective to conventional radiation therapy (CONV-RT) with respect to tumor killing. Unresectable pancreatic cancer is challenging to control without ablative doses of radiation, but this is difficult to achieve without significant gastrointestinal toxicity. In this review article, we explore the propsed mechanisms of FLASH-RT and its tissue-sparing effect, as well as its relevance and suitability for the treatment of pancreatic cancer. We also briefly discuss the challenges with regard to dosimetry, dose rate, and fractionation for using FLASH-RT to treat this disease.

20.
Med Phys ; 49(3): 2082-2095, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997969

RESUMO

In their seminal paper from 2014, Fauvadon et al. coined the term FLASH irradiation to describe ultra-high-dose rate irradiation with dose rates greater than 40 Gy/s, which results in delivery times of fractions of a second. The experiments presented in that paper were performed with a high-dose-per-pulse 4.5 MeV electron beam, and the results served as the basis for the modern-day field of FLASH radiation therapy (RT). In this article, we review the studies that have been published after those early experiments, demonstrating the robust effects of FLASH RT on normal tissue sparing in preclinical models. We also outline the various irradiation parameters that have been used. Although the robustness of the biological response has been established, the mechanisms behind the FLASH effect are currently under investigation in a number of laboratories. However, differences in the magnitude of the FLASH effect between experiments in different labs have been reported. Reasons for these differences even within the same animal model are currently unknown, but likely has to do with the marked differences in irradiation parameter settings used. Here, we show that these parameters are often not reported, which complicates large multistudy comparisons. For this reason, we propose a new standard for beam parameter reporting and discuss a systematic path to the clinical translation of FLASH RT.


Assuntos
Elétrons , Radioterapia , Animais , Protocolos Clínicos , Radioterapia/métodos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA