Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 123(8): 1306-1326, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616269

RESUMO

Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.


Assuntos
Membranas Mitocondriais , Podospora , Trifosfato de Adenosina/metabolismo , Longevidade , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fosfolipídeos/metabolismo , Podospora/genética , Podospora/metabolismo , Saccharomyces cerevisiae/genética
2.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159328

RESUMO

The maintenance of cellular homeostasis over time is essential to avoid the degeneration of biological systems leading to aging and disease. Several interconnected pathways are active in this kind of quality control. One of them is autophagy, the vacuolar degradation of cellular components. The absence of the sorting nexin PaATG24 (SNX4 in other organisms) has been demonstrated to result in impairments in different types of autophagy and lead to a shortened lifespan. In addition, the growth rate and the size of vacuoles are strongly reduced. Here, we report how an oleic acid diet leads to longevity of the wild type and a PaAtg24 deletion mutant (ΔPaAtg24). The lifespan extension is linked to altered membrane trafficking, which abrogates the observed autophagy defects in ΔPaAtg24 by restoring vacuole size and the proper localization of SNARE protein PaSNC1. In addition, an oleic acid diet leads to an altered use of the mitochondrial respiratory chain: complex I and II are bypassed, leading to reduced reactive oxygen species (ROS) production. Overall, our study uncovers multiple effects of an oleic acid diet, which extends the lifespan of P. anserina and provides perspectives to explain the positive nutritional effects on human aging.


Assuntos
Podospora , Autofagia , Metabolismo Energético , Humanos , Longevidade , Mitocôndrias/metabolismo , Ácido Oleico/metabolismo
3.
J Fungi (Basel) ; 7(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807190

RESUMO

Research on Podospora anserina unraveled a network of molecular pathways affecting biological aging. In particular, a number of pathways active in the control of mitochondria were identified on different levels. A long-known key process active during aging of P. anserina is the age-related reorganization of the mitochondrial DNA (mtDNA). Mechanisms involved in the stabilization of the mtDNA lead to lifespan extension. Another critical issue is to balance mitochondrial levels of reactive oxygen species (ROS). This is important because ROS are essential signaling molecules, but at increased levels cause molecular damage. At a higher level of the network, mechanisms are active in the repair of damaged compounds. However, if damage passes critical limits, the corresponding pathways are overwhelmed and impaired molecules as well as those present in excess are degraded by specific enzymes or via different forms of autophagy. Subsequently, degraded units need to be replaced by novel functional ones. The corresponding processes are dependent on the availability of intact genetic information. Although a number of different pathways involved in the control of cellular homeostasis were uncovered in the past, certainly many more exist. In addition, the signaling pathways involved in the control and coordination of the underlying pathways are only initially understood. In some cases, like the induction of autophagy, ROS are active. Additionally, sensing and signaling the energetic status of the organism plays a key role. The precise mechanisms involved are elusive and remain to be elucidated.

4.
Mech Ageing Dev ; 186: 111211, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007577

RESUMO

Sorting nexins are a conserved protein family involved in vesicle transport, membrane trafficking and protein sorting. The sorting nexin ATG24/SNX4 has been demonstrated to be involved in different autophagy pathways and in endosomal trafficking. However, its impact on cellular quality control and on aging and development is still elusive. Here we report studies analyzing the function of PaATG24 in the aging model Podospora anserina. Ablation of PaATG24 leads to a reduced growth rate, infertility, and to a pronounced lifespan reduction. These characteristics are accompanied by alterations of the morphology and size distribution of vacuoles and severe impairments in non-selective and selective autophagy of peroxisomes (pexophagy) and mitochondria (mitophagy). While general autophagy and pexophagy are almost completely blocked, a PaATG24-independent form of mitophagy is induced during aging. In the ΔPaAtg24 mutant a strong accumulation of peroxisomes occurs while mitochondrial abundance is only slightly increased. These mitochondria are partially affected in function. Most strikingly, although some PaATG24-independent mitophagy exists, it appears that this is not sufficient to remove dysfunctional mitochondria efficiently enough to prevent premature aging. Overall our data emphasize the key role of mitochondria in aging and of mitophagy in quality control to keep a population of "healthy" mitochondria during aging.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Macroautofagia/fisiologia , Podospora/fisiologia , Nexinas de Classificação/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA