Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 866847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091981

RESUMO

GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.

2.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008835

RESUMO

Growth Factor Independence 1 (GFI1) is a transcription factor with an important role in the regulation of development of myeloid and lymphoid cell lineages and was implicated in the development of myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Reduced expression of GFI1 or presence of the GFI1-36N (serine replaced with asparagine) variant leads to epigenetic changes in human and murine AML blasts and accelerated the development of leukaemia in a murine model of human MDS and AML. We and other groups previously showed that the GFI1-36N allele or reduced expression of GFI1 in human AML blasts is associated with an inferior prognosis. Using GFI1-36S, -36N -KD, NUP98-HOXD13-tg mice and curcumin (a natural histone acetyltransferase inhibitor (HATi)), we now demonstrate that expansion of GFI1-36N or -KD, NUP98-HODXD13 leukaemic cells can be delayed. Curcumin treatment significantly reduced AML progression in GFI1-36N or -KD mice and prolonged AML-free survival. Of note, curcumin treatment had no effect in GFI1-36S, NUP98-HODXD13 expressing mice. On a molecular level, curcumin treatment negatively affected open chromatin structure in the GFI1-36N or -KD haematopoietic cells but not GFI1-36S cells. Taken together, our study thus identified a therapeutic role for curcumin treatment in the treatment of AML patients (homo or heterozygous for GFI1-36N or reduced GFI1 expression) and possibly improved therapy outcome.


Assuntos
Curcumina/uso terapêutico , Epigênese Genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Animais , Curcumina/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Intervalo Livre de Doença , Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Heme/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Front Oncol ; 9: 839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555592

RESUMO

Structural variants (SV) are changes in the genomic landscape that can alter gene expression levels and thus lead to disease development. The most common and best studied SVs in hematological malignancies are chromosomal translocations. Here, parts of two genes that are normally on different chromosomes come into close proximity due to a failure in DNA repair. As a consequence, fusion proteins which show a different function and/or cellular localization compared to the two original proteins are expressed, sometimes even at different levels. The identification of chromosomal translocations is often used to identify the specific disease a patient is suffering from. In addition, SVs such as deletions, duplications, inversions and single nucleotide polymorphisms (SNPs) can occur in hematopoietic cells and lead to their malignant transformations. Changes in the 3D genome structure have also recently been shown to impact disease development. In this review, we describe a variety of SVs occurring in different subtypes of hematological malignancies. Currently, most therapeutic approaches target fusion proteins which are the cellular product of chromosomal translocations. However, amplifications and SNPs also play a role in disease progression and can be targeted. We present some examples for different types of structural variants and how they are currently treated.

5.
Leukemia ; 33(6): 1411-1426, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30679800

RESUMO

LSD1 has emerged as a promising epigenetic target in the treatment of acute myeloid leukemia (AML). We used two murine AML models based on retroviral overexpression of Hoxa9/Meis1 (H9M) or MN1 to study LSD1 loss of function in AML. The conditional knockout of Lsd1 resulted in differentiation with both granulocytic and monocytic features and increased ATRA sensitivity and extended the survival of mice with H9M-driven AML. The conditional knockout led to an increased expression of multiple genes regulated by the important myeloid transcription factors GFI1 and PU.1. These include the transcription factors GFI1B and IRF8. We also compared the effect of different irreversible and reversible inhibitors of LSD1 in AML and could show that only tranylcypromine derivatives were capable of inducing a differentiation response. We employed a conditional knock-in model of inactive, mutant LSD1 to study the effect of only interfering with LSD1 enzymatic activity. While this was sufficient to initiate differentiation, it did not result in a survival benefit in mice. Hence, we believe that targeting both enzymatic and scaffolding functions of LSD1 is required to efficiently treat AML. This finding as well as the identified biomarkers may be relevant for the treatment of AML patients with LSD1 inhibitors.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/antagonistas & inibidores , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Tranilcipromina/farmacologia , Animais , Antidepressivos/farmacologia , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/fisiologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas
7.
Haematologica ; 103(4): 614-625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29326122

RESUMO

Differentiation of hematopoietic stem cells is regulated by a concert of different transcription factors. Disturbed transcription factor function can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth factor independence 1b (Gfi1b) is a repressing transcription factor regulating quiescence of hematopoietic stem cells and differentiation of erythrocytes and platelets. Here, we show that low expression of Gfi1b in blast cells is associated with an inferior prognosis of MDS and AML patients. Using different models of human MDS or AML, we demonstrate that AML development was accelerated with heterozygous loss of Gfi1b, and latency was further decreased when Gfi1b was conditionally deleted. Loss of Gfi1b significantly increased the number of leukemic stem cells with upregulation of genes involved in leukemia development. On a molecular level, we found that loss of Gfi1b led to epigenetic changes, increased levels of reactive oxygen species, as well as alteration in the p38/Akt/FoXO pathways. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS and AML development.


Assuntos
Leucemia Mieloide Aguda/etiologia , Síndromes Mielodisplásicas/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Animais , Epigenômica , Proteína Forkhead Box O1/metabolismo , Deleção de Genes , Heterozigoto , Homozigoto , Humanos , Camundongos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Sci Rep ; 7(1): 15720, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29147018

RESUMO

The differentiation of haematopoietic cells is regulated by a plethora of so-called transcription factors (TFs). Mutations in genes encoding TFs or graded reduction in their expression levels can induce the development of various malignant diseases such as acute myeloid leukaemia (AML). Growth Factor Independence 1 (GFI1) is a transcriptional repressor with key roles in haematopoiesis, including regulating self-renewal of haematopoietic stem cells (HSCs) as well as myeloid and lymphoid differentiation. Analysis of AML patients and different AML mouse models with reduced GFI1 gene expression levels revealed a direct link between low GFI1 protein level and accelerated AML development and inferior prognosis. Here, we report that upregulated expression of GFI1 in several widely used leukemic cell lines inhibits their growth and decreases the ability to generate colonies in vitro. Similarly, elevated expression of GFI1 impedes the in vitro expansion of murine pre-leukemic cells. Using a humanized AML model, we demonstrate that upregulation of GFI1 expression leads to myeloid differentiation morphologically and immunophenotypically, increased level of apoptosis and reduction in number of cKit+ cells. These results suggest that increasing GFI1 level in leukemic cells with low GFI1 expression level could be a therapeutic approach.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
9.
Haematologica ; 101(10): 1216-1227, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27390361

RESUMO

The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/patologia , Macrófagos/patologia , Fatores de Transcrição/fisiologia , Animais , Medula Óssea/patologia , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Baço/patologia
10.
Exp Hematol ; 44(8): 713-726.e14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216773

RESUMO

Epigenetic changes can contribute to development of acute myeloid leukemia (AML), a malignant disease of the bone marrow. A single-nucleotide polymorphism of transcription factor growth factor independence 1 (GFI1) generates a protein with an asparagine at position 36 (GFI1(36N)) instead of a serine at position 36 (GFI1(36S)), which is associated with de novo AML in humans. However, how GFI1(36N) predisposes to AML is poorly understood. To explore the mechanism, we used knock-in mouse strains expressing GFI1(36N) or GFI1(36S). Presence of GFI1(36N) shortened the latency and increased the incidence of AML in different murine models of myelodysplastic syndrome/AML. On a molecular level, GFI1(36N) induced genomewide epigenetic changes, leading to expression of AML-associated genes. On a therapeutic level, use of histone acetyltransferase inhibitors specifically impeded growth of GFI1(36N)-expressing human and murine AML cells in vitro and in vivo. These results establish, as a proof of principle, how epigenetic changes in GFI1(36N)-induced AML can be targeted.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Leucemia Mieloide Aguda/genética , Mutação , Fatores de Transcrição/genética , Substituição de Aminoácidos , Animais , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Transformação Celular Neoplásica/genética , Códon , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/mortalidade
11.
Elife ; 5: e11469, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26901438

RESUMO

Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes.


Assuntos
Redes Reguladoras de Genes , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Simulação por Computador , Perfilação da Expressão Gênica , Camundongos , Modelos Teóricos , Análise de Sequência de DNA
12.
Blood ; 127(13): e12-23, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26809507

RESUMO

Comprehensive study of transcriptional control processes will be required to enhance our understanding of both normal and malignant hematopoiesis. Modern sequencing technologies have revolutionized our ability to generate genome-scale expression and histone modification profiles, transcription factor (TF)-binding maps, and also comprehensive chromatin-looping information. Many of these technologies, however, require large numbers of cells, and therefore cannot be applied to rare hematopoietic stem/progenitor cell (HSPC) populations. The stem cell factor-dependent multipotent progenitor cell line HPC-7 represents a well-recognized cell line model for HSPCs. Here we report genome-wide maps for 17 TFs, 3 histone modifications, DNase I hypersensitive sites, and high-resolution promoter-enhancer interactomes in HPC-7 cells. Integrated analysis of these complementary data sets revealed TF occupancy patterns of genomic regions involved in promoter-anchored loops. Moreover, preferential associations between pairs of TFs bound at either ends of chromatin loops led to the identification of 4 previously unrecognized protein-protein interactions between key blood stem cell regulators. All HPC-7 data sets are freely available both through standard repositories and a user-friendly Web interface. Together with previously generated genome-wide data sets, this study integrates HPC-7 data into a genomic resource on par with ENCODE tier 1 cell lines and, importantly, is the only current model with comprehensive genome-scale data that is relevant to HSPC biology.


Assuntos
Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Embrião de Mamíferos , Genoma , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Fatores de Transcrição/genética
13.
Nucleic Acids Res ; 44(8): e72, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26721389

RESUMO

Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência/métodos , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Regulação da Expressão Gênica/genética , Humanos , Análise de Sequência de DNA
14.
Nucleic Acids Res ; 42(22): 13513-24, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25428352

RESUMO

Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the 'enhanceosome' versus the 'TF collective' model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair-E-box and GATA, and in two previously unknown motif-pairs with constrained spacing-Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the 'enhanceosome' model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs.


Assuntos
Hematopoese/genética , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Células Sanguíneas/metabolismo , Imunoprecipitação da Cromatina , DNA/química , DNA/metabolismo , Camundongos , Motivos de Nucleotídeos , Análise de Sequência de DNA
15.
Development ; 141(20): 4018-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25252941

RESUMO

Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células-Tronco Hematopoéticas , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , Fenótipo , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transgenes , Xanthomonas/metabolismo
16.
Blood ; 122(14): e12-22, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23974199

RESUMO

Genome-wide combinatorial binding patterns for key transcription factors (TFs) have not been reported for primary human hematopoietic stem and progenitor cells (HSPCs), and have constrained analysis of the global architecture of molecular circuits controlling these cells. Here we provide high-resolution genome-wide binding maps for a heptad of key TFs (FLI1, ERG, GATA2, RUNX1, SCL, LYL1, and LMO2) in human CD34(+) HSPCs, together with quantitative RNA and microRNA expression profiles. We catalog binding of TFs at coding genes and microRNA promoters, and report that combinatorial binding of all 7 TFs is favored and associated with differential expression of genes and microRNA in HSPCs. We also uncover a previously unrecognized association between FLI1 and RUNX1 pairing in HSPCs, we establish a correlation between the density of histone modifications that mark active enhancers and the number of overlapping TFs at a peak, we demonstrate bivalent histone marks at promoters of heptad target genes in CD34(+) cells that are poised for later expression, and we identify complex relationships between specific microRNAs and coding genes regulated by the heptad. Taken together, these data reveal the power of integrating multifactor sequencing of chromatin immunoprecipitates with coding and noncoding gene expression to identify regulatory circuits controlling cell identity.


Assuntos
Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/genética , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Humanos , RNA não Traduzido , Transcrição Gênica
17.
Blood ; 122(15): 2694-703, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23974202

RESUMO

The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34(+) normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias.


Assuntos
Regulação Leucêmica da Expressão Gênica/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos , Elementos Facilitadores Genéticos/genética , Genômica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Células Progenitoras Mieloides/fisiologia , Transplante de Neoplasias , Transcrição Gênica/fisiologia , Regulador Transcricional ERG
18.
Bioinformatics ; 29(13): i80-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813012

RESUMO

MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Modelos Genéticos , Animais , Linhagem Celular , Eritrócitos/citologia , Genes Reguladores , Células-Tronco Hematopoéticas/citologia , Camundongos , Fatores de Transcrição/metabolismo
19.
Nat Cell Biol ; 15(4): 363-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23524953

RESUMO

Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.


Assuntos
Biomarcadores Tumorais/genética , Medula Óssea/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/fisiologia , Análise de Célula Única , Animais , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Células-Tronco Hematopoéticas/citologia , Humanos , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Cancer Cell ; 23(2): 200-14, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23410974

RESUMO

Most patients with acute lymphoblastic leukemia (ALL) fail current treatments highlighting the need for better therapies. Because oncogenic signaling activates a p53-dependent DNA damage response and apoptosis, leukemic cells must devise appropriate countermeasures. We show here that growth factor independence 1 (Gfi1) can serve such a function because Gfi1 ablation exacerbates p53 responses and lowers the threshold for p53-induced cell death. Specifically, Gfi1 restricts p53 activity and expression of proapoptotic p53 targets such as Bax, Noxa (Pmaip1), and Puma (Bbc3). Subsequently, Gfi1 ablation cures mice from leukemia and limits the expansion of primary human T-ALL xenografts in mice. This suggests that targeting Gfi1 could improve the prognosis of patients with T-ALL or other lymphoid leukemias.


Assuntos
Apoptose , Dano ao DNA/genética , Proteínas de Ligação a DNA/fisiologia , Linfoma de Células B/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Humanos , Linfoma de Células B/genética , Linfoma de Células B/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor Notch1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA