Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1383123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799460

RESUMO

Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.


Assuntos
Fator H do Complemento , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/genética , Animais , Camundongos , Meia-Vida , Polissacarídeos/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Glicosilação , Proteínas Recombinantes , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino
2.
JIMD Rep ; 64(6): 460-467, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37927484

RESUMO

Fabry disease (FD, OMIM 301500) is a rare X-linked inherited lysosomal storage disorder associated with reduced activities of α-galactosidase A (aGal, EC 3.2.1.22). The current standard of care for FD is based on enzyme replacement therapy (ERT), in which a recombinantly produced version of αGal is intravenously (iv) applied to Fabry patients in biweekly intervals. Though the iv application is clinically efficacious, periodical infusions are inconvenient, time- and resource-consuming and they negatively impact the patients' quality of life. Subcutaneous (sc) injection, in contrast, is an established route of administration for treatment of chronic conditions. It opens the beneficial option of self-administration, thereby improving patients' quality of life and at the same time reducing treatment costs. We have previously shown that Moss-α-Galactosidase (moss-aGal), recombinantly produced in the moss Physcomitrium patens, is efficient in degrading accumulated Gb3 in target organs of murine model of FD and in the phase I clinical study, we obtained first efficacy evidence in human patients following single iv infusion. Here, we tested the efficacy of subcutaneous administration of moss-aGal and compared it with the results observed following iv infusion in Fabry mice. The obtained findings demonstrate that subcutaneously applied moss-aGal is correctly transported to target organs and efficacious in degrading Gb3 deposits there and thus suggest the possibility of using this route of administration for therapy of Fabry disease.

3.
JIMD Rep ; 59(1): 81-89, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33977033

RESUMO

Pompe disease, an autosomal recessive lysosomal storage disorder, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). On cellular level, there is lysosomal-bound and free accumulation of glycogen and subsequent damage of organelles and organs. The most severe affected tissues are skeletal muscles and heart. The only available treatment to date is an enzyme replacement therapy (ERT) with alglucosidase alfa, a recombinant human GAA (rhGAA) modified with mannose-6-phosphate (M6P), which is internalized via M6P-mediated endocytosis. There is an unmet need to improve this type of therapy, especially in regard to skeletal muscle. Using different tissue culture models, we recently provided evidence that a moss-derived nonphosphorylated rhGAA (moss-GAA), carrying a glycosylation with terminal N-acetylglucosamine residues (GnGn), might have the potential to improve targeting of skeletal muscle. Now, we present a pilot treatment of Gaa -/- mice with moss-GAA. We investigated general effects as well as the uptake into different organs following short-term treatment. Our results do confirm that moss-GAA reaches the target disease organs and thus might have the potential to be an alternative or complementary ERT to the existing one.

4.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290314

RESUMO

Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The result of the GAA deficiency is a ubiquitous lysosomal and non-lysosomal accumulation of glycogen. The most affected tissues are heart, skeletal muscle, liver, and the nervous system. Replacement therapy with the currently approved enzyme relies on M6P-mediated endocytosis. However, therapeutic outcomes still leave room for improvement, especially with regard to skeletal muscles. We tested the uptake, activity, and effect on glucose metabolism of a non-phosphorylated recombinant human GAA produced in moss (moss-GAA). Three variants of moss-GAA differing in glycosylation pattern have been analyzed: two with terminal mannose residues in a paucimannosidic (Man3) or high-mannose (Man 5) configuration and one with terminal N-acetylglucosamine residues (GnGn). Compared to alglucosidase alfa the moss-GAA GnGn variant showed increased uptake in differentiated myotubes. Moreover, incubation of immortalized muscle cells of Gaa-/- mice with moss-GAA GnGn led to similarly efficient clearance of accumulated glycogen as with alglucosidase alfa. These initial data suggest that M6P-residues might not always be necessary for the cellular uptake in enzyme replacement therapy (ERT) and indicate the potential of moss-GAA GnGn as novel alternative drug for targeting skeletal muscle in Pompe patients.


Assuntos
Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/metabolismo , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Proteínas Recombinantes/farmacologia , Animais , Biomarcadores , Briófitas/genética , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Terapia de Reposição de Enzimas/métodos , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/etiologia , Humanos , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Proteínas Recombinantes/uso terapêutico , alfa-Glucosidases/farmacologia , alfa-Glucosidases/uso terapêutico
5.
J Inherit Metab Dis ; 42(3): 527-533, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30746723

RESUMO

Moss-aGalactosidase A (moss-aGal) is a moss-derived version of human α-galactosidase developed for enzyme replacement therapy in patients with Fabry disease. It exhibits a homogenous N-glycosylation profile with >90% mannose-terminated glycans. In contrast to mammalian cell produced α-galactosidase, moss-aGal does not rely on mannose-6-phosphate receptor mediated endocytosis but targets the mannose receptor for tissue uptake. We conducted a phase 1 clinical trial with moss-aGal in six patients with confirmed diagnosis of Fabry disease during a 28-day schedule. All patients received a single dose of 0.2 mg/kg moss-aGal by i.v.-infusion. Primary endpoints of the trial were safety and pharmacokinetics; secondary endpoints were pharmacodynamics by analyzing urine and plasma Gb3 and lyso-Gb3 concentrations. In all patients, the administered single dose was well tolerated. No safety issues were observed. Pharmacokinetic data revealed a stable nonlinear profile with a short plasma half-life of moss-aGal of 14 minutes. After one single dose of moss-aGal, urinary Gb3 concentrations decreased up to 23% 7 days and up to 60% 28 days post-dose. Plasma concentrations of lyso-Gb3 decreased by 3.8% and of Gb3 by 11% 28 days post-dose. These data reveal that a single dose of moss-aGal was safe, well tolerated, and led to a prolonged reduction of Gb3 excretion. As previously shown, moss-aGal is taken up via the mannose receptor, which is expressed on macrophages but also on endothelial and kidney cells. Thus, these data indicate that moss-aGal may target kidney cells. After these promising results, phase 2/3 clinical trials are in preparation.


Assuntos
Terapia de Reposição de Enzimas , Doença de Fabry/tratamento farmacológico , Glicolipídeos/sangue , Glicolipídeos/urina , Esfingolipídeos/sangue , Esfingolipídeos/urina , alfa-Galactosidase/farmacologia , alfa-Galactosidase/farmacocinética , Adulto , Doença de Fabry/sangue , Doença de Fabry/urina , Feminino , Alemanha , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
6.
J Proteome Res ; 17(11): 3749-3760, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226384

RESUMO

Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.


Assuntos
Ácido Aspártico Proteases/isolamento & purificação , Bryopsida/enzimologia , Metaloproteases/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Inibidores de Proteases/isolamento & purificação , Serpinas/isolamento & purificação , Subtilisinas/isolamento & purificação , Ácido Aspártico Proteases/classificação , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Reatores Biológicos , Bryopsida/química , Bryopsida/genética , Biologia Computacional , Técnicas de Inativação de Genes , Espectrometria de Massas/métodos , Metaloproteases/classificação , Metaloproteases/genética , Metaloproteases/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inibidores de Proteases/classificação , Inibidores de Proteases/metabolismo , Análise Serial de Proteínas , Proteólise , Serpinas/classificação , Serpinas/genética , Serpinas/metabolismo , Subtilisinas/classificação , Subtilisinas/genética , Subtilisinas/metabolismo
7.
J Am Soc Nephrol ; 28(5): 1462-1474, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27932477

RESUMO

Genetic defects in complement regulatory proteins can lead to severe renal diseases, including atypical hemolytic uremic syndrome and C3 glomerulopathies, and age-related macular degeneration. The majority of the mutations found in patients with these diseases affect the glycoprotein complement factor H, the main regulator of the alternative pathway of complement activation. Therapeutic options are limited, and novel treatments, specifically those targeting alternative pathway activation, are highly desirable. Substitution with biologically active factor H could potentially treat a variety of diseases that involve increased alternative pathway activation, but no therapeutic factor H is commercially available. We recently reported the expression of full-length recombinant factor H in moss (Physcomitrella patens). Here, we present the production of an improved moss-derived recombinant human factor H devoid of potentially immunogenic plant-specific sugar residues on protein N-glycans, yielding approximately 1 mg purified moss-derived human factor H per liter of initial P. patens culture after a multistep purification process. This glycosylation-optimized factor H showed full in vitro complement regulatory activity similar to that of plasma-derived factor H and efficiently blocked LPS-induced alternative pathway activation and hemolysis induced by sera from patients with atypical hemolytic uremic syndrome. Furthermore, injection of moss-derived factor H reduced C3 deposition and increased serum C3 levels in a murine model of C3 glomerulopathy. Thus, we consider moss-produced recombinant human factor H a promising pharmaceutical product for therapeutic intervention in patients suffering from complement dysregulation.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Bryopsida , Proteínas do Sistema Complemento , Doenças do Sistema Imunitário/tratamento farmacológico , Animais , Bryopsida/metabolismo , Fator H do Complemento/biossíntese , Fator H do Complemento/metabolismo , Fator H do Complemento/uso terapêutico , Glicosilação , Humanos , Camundongos
8.
J Inherit Metab Dis ; 39(2): 293-303, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26310963

RESUMO

Enzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs. However, the therapeutic efficacy of MR-mediated delivery of mannose-terminated enzymes in these diseases has not been fully evaluated. We tested the effectiveness of a non-phosphorylated α-galactosidase A produced from moss (referred to as moss-aGal) in vitro and in a mouse model of Fabry disease. Endocytosis of moss-aGal was MR-dependent. Compared to agalsidase alfa, a phosphorylated form of α-galactosidase A, moss-aGal was more preferentially targeted to the kidney. Cellular localization of moss-aGal and agalsidase alfa in the heart and kidney was essentially identical. A single injection of moss-aGal led to clearance of accumulated substrate in the heart and kidney to an extent comparable to that achieved by agalsidase alfa. This study suggested that mannose-terminated enzymes may be sufficiently effective for some LSDs in which non-macrophage cells are affected, and that M6P residues may not always be a prerequisite for ERT as previously considered.


Assuntos
Doença de Fabry/enzimologia , Doença de Fabry/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Manosefosfatos/metabolismo , Receptores de Superfície Celular/metabolismo , alfa-Galactosidase/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Feminino , Humanos , Isoenzimas/metabolismo , Rim/metabolismo , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Masculino , Receptor de Manose , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes
9.
Plant Biotechnol J ; 9(3): 373-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20723134

RESUMO

The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma.


Assuntos
Bryopsida/metabolismo , Proteínas Recombinantes/biossíntese , Bryopsida/genética , Cromatografia Líquida , Fator H do Complemento/biossíntese , Fator H do Complemento/química , Humanos , Espectrometria de Massas , Fenótipo , Plantas Geneticamente Modificadas
10.
Biochim Biophys Acta ; 1761(3): 301-12, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16630744

RESUMO

After wounding, the moss Physcomitrella patens emits fatty acid derived volatiles like octenal, octenols and (2E)-nonenal. Flowering plants produce nonenal from C18-fatty acids via lipoxygenase and hydroperoxide lyase reactions, but the moss exploits the C20 precursor arachidonic acid for the formation of these oxylipins. We describe the isolation of the first cDNA (PpHPL) encoding a hydroperoxide lyase from a lower eukaryotic organism. The physiological pathway allocation and characterization of a downstream enal-isomerase gives a new picture for the formation of fatty acid derived volatiles from lower plants. Expression of a fusion protein with a yellow fluorescent protein in moss protoplasts showed that PpHPL was found in clusters in membranes of plastids. PpHPL can be classified as an unspecific hydroperoxide lyase having a substrate preference for 9-hydroperoxides of C18-fatty acids but also the predominant substrate 12-hydroperoxy arachidonic acid is accepted. Feeding experiments using arachidonic acid show an increase in the 12-hydroperoxide being metabolized to C8-aldehydes/alcohols and (3Z)-nonenal, which is rapidly isomerized to (2E)-nonenal. PpHPL knock out lines failed to emit (2E)-nonenal while formation of C8-volatiles was not affected indicating that in contrast to flowering plants, PpHPL is only involved in formation of a specific subset of volatiles.


Assuntos
Aldeído Liases/metabolismo , Aldeídos/metabolismo , Bryopsida/química , Bryopsida/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Aldeído Liases/classificação , Aldeído Liases/genética , Aldeído Liases/isolamento & purificação , Aldeídos/química , Bryopsida/citologia , Bryopsida/genética , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
11.
BMC Biotechnol ; 5: 30, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16271156

RESUMO

BACKGROUND: Efficient targeting to appropriate cell organelles is one of the bottlenecks for the production of recombinant proteins in plant systems. A common practice is to use the native secretory signal peptide of the heterologous protein to be produced. Though general features of secretion signals are conserved between plants and animals, the broad sequence variability among signal peptides suggests differing efficiency of signal peptide recognition. RESULTS: Aiming to improve secretion in moss bioreactors, we quantitatively compared the efficiency of two human signal peptides and six signals from recently isolated moss (Physcomitrella patens) proteins. We therefore used fusions of the different signals to heterologous reporter sequences for transient transfection of moss cells and measured the extra- and intracellular accumulation of the recombinant proteins rhVEGF and GST, respectively. Our data demonstrates an up to fivefold higher secretion efficiency with endogenous moss signals compared to the two utilised human signal peptides. CONCLUSION: From the distribution of extra- and intracellular recombinant proteins, we suggest translational inhibition during the signal recognition particle-cycle (SRP-cycle) as the most probable of several possible explanations for the decreased extracellular accumulation with the human signals. In this work, we report on the supremacy of moss secretion signals over the utilised heterologous ones within the moss-bioreactor system. Though the molecular details of this effect remain to be elucidated, our results will contribute to the improvement of molecular farming systems.


Assuntos
Biotecnologia/métodos , Técnicas Genéticas , Sequência de Aminoácidos , Reatores Biológicos , Briófitas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Genes Reporter , Vetores Genéticos , Glutationa Transferase/metabolismo , Humanos , Dados de Sequência Molecular , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Eur J Cell Biol ; 83(4): 145-52, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15260436

RESUMO

In seed plants aspartic proteases (APs) are known to reside in storage vacuoles. Targeting to this compartment is provoked by a secretory signal peptide and the plant-specific insert (PSI). In order to study secretory and vacuolar targeting in a seedless plant, the moss Physcomitrella patens, we isolated a cDNA encoding PpAP1, a novel aspartic proteinase. Sequence alignment with other members of the family of plant APs (EC 3.4.23) revealed a high overall identity and the Pfam motifs for aspartic proteinase and PSI were clearly recognised. In phylogenetic analysis PpAP1 was placed at a very basal position outside of the bigger clusters. Protoplasts transiently expressing the PpAP1 signal peptide fused to GFP showed fluorescence in a well-developed ER-Golgi network. A C-terminal fusion of GFP to the entire PpAP1 protein showed vacuolar fluorescence in transiently transfected protoplasts. Therefore, the vacuole is apparently the in-vivo target for PpAP1. In this study the three-dimensional peculiarity of the endomembrane continuum of ER and Golgi was visualised in a seedless plant for the first time. Above all the functionality of the secretory and the vacuolar targeting signals make them become useful tools for biotechnological approaches.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Bryopsida/metabolismo , Vesículas Secretórias/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Bryopsida/genética , Clonagem Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Filogenia , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA