Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3188, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823224

RESUMO

This study shows residual surface carbon's influence on photocathodes' quantum efficiency based on p-GaN grown on sapphire by metal organic chemical vapor deposition. An X-ray photoelectron spectrometer (XPS) built in an ultrahigh vacuum system allowed the in-situ monitoring of the photocathode surface beginning immediately after their cleaning and throughout the activation and degradation processes. An atomically clean surface is necessary to achieve a negative electron affinity, which is the main prerequisite for high quantum efficiency. The p-GaN samples were cleaned with ethanol and underwent a sub-sequential thermal vacuum cleaning. Although carbon and oxygen contaminations are expected to be undesired impurities from the metal organic chemical vapor deposition, which remained on the surface, p-GaN could still form a negative electron affinity surface when exclusively activated with cesium. After the activation with cesium, a shift to a higher binding energy of the photoemission peaks was observed, and a new species, a so-called cesium carbide, was formed, growing over time. The XPS data elucidated the critical role of these cesium carbide species in photocathode degradation. The X-ray damage to the p-GaN:Cs photocathodes, especially the influence on the cesium, was additionally discussed.

2.
Micromachines (Basel) ; 13(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36014163

RESUMO

As is well known, the quality of the photocathodes is essential for the stability and reliability of photoinjector operations. Especially for superconducting radio frequency photoinjectors (SRF guns), the photocathode represents one of the most critical parts. Benefiting from the fast development of photocathode technology in recent years, several SRF guns have been successfully operated or tested for beam generation at the kHz-MHz repetition rate. In this paper, we will review the achievements as well as the open questions in the applications of photocathodes for SRF gun operation. Furthermore, we will discuss the possible improvement of photocathodes for future CW electron sources.

3.
Micromachines (Basel) ; 13(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35744463

RESUMO

Accelerator scientists have high demands on photocathodes possessing high quantum efficiency (QE) and long operational lifetime. p-GaN, as a new photocathode type, has recently gained more and more interest because of its ability to form a negative electron affinity (NEA) surface. Being activated with a thin layer of cesium, p-GaN:Cs photocathodes promise higher QE and better stability than the known photocathodes. In our study, p-GaN samples grown on sapphire or silicon were wet chemically cleaned and transferred into an ultra-high vacuum (UHV) chamber, where they underwent a subsequent thermal cleaning. The cleaned p-GaN samples were activated with cesium to obtain p-GaN:Cs photocathodes, and their performance was monitored with respect to their quality, especially their QE and storage lifetime. The surface topography and morphology were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray (EDX) spectroscopy. We have shown that p-GaN could be efficiently reactivated with cesium several times. This paper systematically compares the influence of wet chemical cleaning as well as thermal cleaning at various temperatures on the QE, storage lifetime and surface morphology of p-GaN. As expected, the cleaning strongly influences the cathodes' quality. We show that high QE and long storage lifetime are achievable at lower cleaning temperatures in our UHV chamber.

4.
Phys Chem Chem Phys ; 20(38): 25039-25043, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246822

RESUMO

The pressure dependence of the 129Xe chemical shift in the metal-organic frameworks (MOFs) UiO-66 and UiO-67 (UiO - University of Oslo) has been investigated using both theory and experiment. The resulting chemical shift isotherms were analyzed with a theoretical approach based on model systems (as proposed by K. Trepte, J. Schaber, S. Schwalbe, F. Drache, I. Senkovska, S. Kaskel, J. Kortus, E. Brunner and G. Seifert, Phys. Chem. Chem. Phys., 2017, 19, 10020-10027) and experimental 129Xe NMR measurements at different pressures. All investigations were carried out at T = 237 K while the pressure range was chosen according to the maximum pressure at which Xe liquifies (p0 = 1.73 MPa or 17.3 bar), thus 0 < p ≤ p0. The theoretically predicted chemical shift isotherms agree well with the experimental ones. Additionally, a comparison of the chemical shift isotherms with volumetric adsorption isotherms was carried out to determine the similarities and differences of both isotherms.

5.
RSC Adv ; 8(47): 26793-26803, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35541047

RESUMO

Rubber composites were prepared by mixing bromobutyl rubber (BIIR) with silica particles in the presence of 1-butylimidazole. In addition to pristine (precipitated) silica, silanized particles with aliphatic or imidazolium functional groups, respectively, were used as filler. The silanization was carried out either separately or in situ during compounding. The silanized particles were characterized by TGA, 1H-29Si cross polarization (CP)/MAS NMR, and Zeta potential measurements. During compounding, the bromine groups of BIIR were converted with 1-butylimidazole to ionic imidazolium groups which formed a dynamic network by ionic association. Based on DMA temperature and strain sweep measurements as well as cyclic tensile tests and stress-strain measurements it could be concluded that interactions between the ionic groups and interactions with the functional groups of the silica particles strongly influence the mechanical and viscoelastic behavior of the composites. A particularly pronounced reinforcing effect was observed for the composite with pristine silica, which was attributed to acid-base interactions between the silanol and imidazolium groups. In composites with alkyl or imidazolium functionalized silica particles, the interactions between the filler and the rubber matrix form dynamic networks with pronounced self-healing behavior and excellent tensile strength values of up to 19 MPa. This new approach in utilizing filler-matrix interactions in the formation of dynamic networks opens up new avenues in designing new kinds of particle-reinforced self-healing elastomeric materials with high technological relevance.

6.
Phys Chem Chem Phys ; 19(15): 10020-10027, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28362453

RESUMO

The NMR chemical shift of the xenon isotope 129Xe inside the metal-organic frameworks (MOFs) UiO-66 and UiO-67 (UiO - University of Oslo) has been investigated both with density functional theory (DFT) and in situ high-pressure 129Xe NMR measurements. The experiments reveal a decrease of the total chemical shift comparing the larger isoreticular MOF (UiO-67) with the smaller one (UiO-66), even though one may expect an increase due to the higher amount of adsorbed Xe atoms. We are able to calculate contributions to the chemical shift individually. This allows us to evaluate the shift inside the different pores independently. To compare the theoretical results with the experimental ones, we performed molecular dynamics simulations of Xe in the MOFs. For this purpose, the pores were completely filled with Xe to gain insight into the distribution of Xe at high pressures. The resulting trend of the total shift agrees well between the theoretical predictions and the experiments. Moreover, we are able to describe specific contributions to the total shift per pore, explaining the experimental behavior at an atomistic level.

7.
Dalton Trans ; 45(10): 4407-15, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26876816

RESUMO

A new approach for the fine tuning of flexibility in MOFs, involving functionalization of the secondary building unit, is presented. The "gate pressure" MOF [Zn3(bpydc)2(HCOO)2] was used as a model material and SBU functionalization was performed by using monocarboxylic acids such as acetic, benzoic or cinnamic acids instead of formic acid in the synthesis. The resulting materials are isomorphous to [Zn3(bpydc)2(HCOO)2] in the "as made" form, but show different structural dynamics during the guest removal. The activated materials have entirely different properties in the nitrogen physisorption experiments clearly showing the tunability of the gate pressure, at which the structural transformation occurs, by using monocarboxylic acids with varying backbone structure in the synthesis. Thus, increasing the number of carbon atoms in the backbone leads to the decreasing gate pressure required to initiate the structural transition. Moreover, in situ adsorption/PXRD data suggest differences in the mechanism of the structural transformations: from "gate opening" in the case of formic acid to "breathing" if benzoic acid is used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA