Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144194

RESUMO

Unlike the majority of sauropsids, which breathe primarily through costal and abdominal muscle contractions, extant crocodilians have evolved the hepatic piston pump, a unique additional ventilatory mechanism powered by the diaphragmaticus muscle. This muscle originates from the bony pelvis, wrapping around the abdominal viscera, extending cranially to the liver. The liver then attaches to the caudal margin of the lungs, resulting in a sub-fusiform morphology for the entire "pulmo-hepatic-diaphragmatic" structure. When the diaphragmaticus muscle contracts during inspiration, the liver is pulled caudally, lowering pressure in the thoracolumbar cavity, and inflating the lungs. It has been established that the hepatic piston pump requires the liver to be displaced to ventilate the lungs, but it has not been determined if the lungs are freely mobile or if the pleural tissues stretch ventrally. It has been hypothesized that the lungs are able to slide craniocaudally with the liver due to the smooth internal ceiling of the thoracolumbar cavity. We assess this through ultrasound video and demonstrate quantitatively and qualitatively that the pulmonary tissues are sliding craniocaudally across the interior thoracolumbar ceiling in actively ventilating live juvenile, sub-adult, and adult individuals (n = 7) of the American alligator (Alligator mississippiensis) during both natural and induced ventilation. The hepatic piston is a novel ventilatory mechanism with a relatively unknown evolutionary history. Questions related to when and under what conditions the hepatic piston first evolved have previously been left unanswered due to a lack fossilized evidence for its presence or absence. By functionally correlating specific characters in the axial skeleton to the hepatic piston, these osteological correlates can be applied to fossil taxa to reconstruct the evolution of the hepatic piston in extinct crocodylomorph archosaurs.


Assuntos
Jacarés e Crocodilos , Humanos , Animais , Respiração , Diafragma , Músculos Abdominais , Fígado/diagnóstico por imagem
2.
Anat Rec (Hoboken) ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528640

RESUMO

The vertebrate respiratory system is challenging to study. The complex relationship between the lungs and adjacent tissues, the vast structural diversity of the respiratory system both within individuals and between taxa, its mobility (or immobility) and distensibility, and the difficulty of quantifying and visualizing functionally important internal negative spaces have all impeded descriptive, functional, and comparative research. As a result, there is a relative paucity of three-dimensional anatomical information on this organ system in all vertebrate groups (including humans) relative to other regions of the body. We present some of the challenges associated with evaluating and visualizing the vertebrate respiratory system using computed and micro-computed tomography and its subsequent digital segmentation. We discuss common mistakes to avoid when imaging deceased and live specimens and various methods for merging manual and threshold-based segmentation approaches to visualize pulmonary tissues across a broad range of vertebrate taxa, with a particular focus on sauropsids (reptiles and birds). We also address some of the recent work in comparative evolutionary morphology and medicine that have used these techniques to visualize respiratory tissues. Finally, we provide a clinical study on COVID-19 in humans in which we apply modeling methods to visualize and quantify pulmonary infection in the lungs of human patients.

3.
Nat Commun ; 14(1): 1575, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949094

RESUMO

It is accepted that non-avian theropod dinosaurs, with their long muscular tails and small forelimbs, had a centre-of-mass close to the hip, while extant birds, with their reduced tails and enlarged wings have their mass centred more cranially. Transition between these states is considered crucial to two key innovations in the avian locomotor system: crouched bipedalism and powered flight. Here we use image-based models to challenge this dichotomy. Rather than a phylogenetic distinction between 'dinosaurian' and 'avian' conditions, we find terrestrial versus volant taxa occupy distinct regions of centre-of-mass morphospace consistent with the disparate demands of terrestrial bipedalism and flight. We track this decoupled evolution of body shape and mass distribution through bird evolution, including the origin of centre-of-mass positions more advantageous for flight and major reversions coincident with terrestriality. We recover modularity in the evolution of limb proportions and centre-of-mass that suggests fully crouched bipedalism evolved after powered flight.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Somatotipos , Aves , Dinossauros/anatomia & histologia , Fósseis
4.
Anat Rec (Hoboken) ; 305(10): 2343-2352, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912969

RESUMO

Crocodilians inspire researchers and the public alike with their explosive hunting methodologies, distinct craniofacial and dental morphology, and resplendent fossil record. This special issue highlights recent advances in the biology and paleontology of this fascinating lineage of vertebrates. The authors in this volume bring crocodylians and their extinct ancestors to life using a variety of approaches including fieldwork, imaging, 3D modeling, developmental biology, physiological monitoring, dissection, and a host of other comparative methods. Our journey begins with early crocodylomorphs from the Triassic, carries us through the radiation of crocodyliforms during the rest of the Mesozoic Era, and finally celebrates the diversification development and biology of extant crocodylians. Crocodyliform science has grown appreciably the past few decades. New fossil species and genetic evidence continue to keep phylogenies and our understanding of relationships wavering in key places of the tree such as the relationships of the extinct marine thalattosuchians as well as still living species like gharials. The application of imaging approaches and 3D modeling to both preserved tissues as well as living specimens is now revealing patterns in brain and lung evolution and function, growth strategies, and feeding and locomotor behaviors across the lineage. Comparative anatomical studies are offering new data on genitals, cephalic venous drainage and thoracoabdominal pressures. The new discoveries found here only reveal there is far more work to be done to understand the biology and behavior responsible for the great radiation extinct suchians and their crocodylian descendants experienced during their conquest of Mesozoic and Tertiary ecosystems.


Assuntos
Jacarés e Crocodilos , Jacarés e Crocodilos/anatomia & histologia , Animais , Evolução Biológica , Ecossistema , Fósseis , Paleontologia , Filogenia
5.
Nat Commun ; 13(1): 4340, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896591

RESUMO

Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods.


Assuntos
Evolução Biológica , Ecologia , Animais , Tamanho Corporal
6.
Anat Rec (Hoboken) ; 305(10): 3037-3054, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35377558

RESUMO

We imaged the lungs of five Cuvier's dwarf caiman (Paleosuchus palpebrosus) via computed tomography (CT) and micro-computed tomography (µCT) and compared these data to the lungs of the American alligator (Alligator mississippiensis). These data demonstrate anatomical commonalities between the lungs of P. palpebrosus and A. mississippiensis, and a few notable differences. The structural similarities are (a) a proximally narrow, distally widened, hook-shaped primary bronchus; (b) a cervical ventral bronchus that branches of the primary bronchus and immediately makes a hairpin turn toward the apex of the lung; (c) a sequential series of dorsobronchi arising from the primary bronchus caudal to the cervical ventral bronchus; (d) intraspecifically highly variable medial sequence of secondary airways; (e) sac-like laterobronchi; and (f) grossly dead-ended caudal group bronchi in the caudal and ventral aspects of the lung. The primary differences between the two taxa are in the overall number of large bronchi (fewer in P. palpebrosus), and the number of branches that contribute to the cardiac regions. Imaging data of both a live and deceased specimen under varying states (postprandial, fasting, total lung capacity, open to atmosphere) indicate that the caudal margin and position of the lungs shift craniocaudally relative to the vertebral column. These imaging data suggest that the smooth thoracic ceiling may be correlated to visceral movement during ventilation, but this hypothesis warrants validation. These results provide the scaffolding for future comparisons between crocodilians, for generating preliminary reconstructions of the ancestral crocodilian bronchial tree, and establishing new hypotheses of bronchial homology across Archosauria.


Assuntos
Jacarés e Crocodilos , Animais , Pulmão/diagnóstico por imagem , Microtomografia por Raio-X
7.
Ochsner J ; 22(1): 61-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355652

RESUMO

Background: Videoconferencing platforms are being used for the purposes of interviewing in academic medicine because of the coronavirus disease 2019 pandemic. We present considerations applicable to interviewers and interviewees in the virtual space, with a focus on medical school and residency applicants. Methods: We reviewed the literature regarding the virtual interview process for medical school and residency by searching PubMed using the following keywords and terms: "interview," "academic medicine," "medical school application," "residency application," "virtual interviews," and "videoconferencing." Our search identified 701 results, from which we selected 36 articles for review. Results: The garnered information focuses on strategies for optimizing the virtual interview process from the standpoint of both the interviewer and the interviewee. We discuss the advantages and disadvantages of the virtual interview process and present recommendations. Conclusion: While the future of the interview process for medical school and residency is uncertain, virtual interviewing is a common and growing practice that will continue to be at least part of the medical interview process for years to come. Interviewers and interviewees should prepare to adapt to the evolving changes in the process.

8.
Anat Rec (Hoboken) ; 305(10): 3088-3100, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310868

RESUMO

A variety of species undergo ontogenetic niche shifts in either diet, habitat, or both. As a result, multiple ontogenetic stages are able to take advantage of different resources and live in sympatry without competing with one another. The American alligator (Alligator mississippiensis) begins to undergo an ontogenetic niche shift in both diet and habitat at a length of 1.2 m. They transition from a terrestrial wetland environment to a riverine environment and take advantage of different dietary resources. At 1.8 m, A. mississippiensis reaches sexual maturity. Ontogenetic shifts in habitat have the capacity to alter morphology, especially limb morphology, as different age classes traverse different ecological systems. We evaluated shape trends in the scapulae, humeri, ilia, and femora using geometric morphometrics to test whether there were punctuated changes in limb shape, shape disparity, and integration corresponding to either the ontogenetic habitat shift or onset of sexual maturity. We found size to strongly correlate with limb shape but found a continuous size gradient rather than punctuated changes in size. Furthermore, we found that adults (total length > 1.8 m) had significantly higher limb shape disparity than juveniles or subadults, likely related to ontogenetic decreases in limb use and a reduction in limb constraints. Finally, we found that the forelimb and hindlimb acted as a single integrated unit and that neither the forelimb nor hindlimb was significantly more integrated than the other. Therefore, the ontogenetic niche shift itself did not impact limb morphology in A. mississippiensis.


Assuntos
Jacarés e Crocodilos , Animais , Dieta , Ecossistema , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia
9.
Anat Rec (Hoboken) ; 305(5): 1147-1167, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569157

RESUMO

Hip flexor musculature was instrumental in the evolution of hominin bipedal gait and in endurance running for hunting in the genus Homo. The iliacus and psoas major muscles were historically considered to have separate tendons with different insertions on the lesser trochanter. However, in the early 20th century, it became "common knowledge" that the two muscles insert together on the lesser trochanter as the "iliopsoas" tendon. We revisited the findings of early anatomists and tested the more recent paradigm of a common "iliopsoas" tendon based on dissections of hips and their associated musculature (n = 17). We rediscovered that the tendon of the psoas muscle inserts only into a crest running from the superior to anterior aspect of the lesser trochanter, separate from the iliacus. The iliacus inserts fleshly into the anterior portion of the lesser trochanter and into an inferior crest extending from it. We developed 3D multibody dynamics biomechanical models for: (a) the conjoint "iliopsoas" tendon hypothesis and (b) the separate insertion hypothesis. We show that the conjoint model underestimates the iliacus' capacity to generate hip flexion relative to the separate insertion model. Further work reevaluating the primate lower limb (including human) through dissection, needs to be performed to develop those datasets for reconstructing anatomy in fossil hominins using the extant phylogenetic bracket approach, which is frequently used for tetrapods clades outside of paleoanthropology.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Hominidae/fisiologia , Animais , Articulação do Quadril/anatomia & histologia , Articulação do Quadril/fisiologia , Humanos , Filogenia , Músculos Psoas/anatomia & histologia , Músculos Psoas/fisiologia , Tendões/anatomia & histologia , Caminhada/classificação , Caminhada/fisiologia
10.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34225841

RESUMO

Ornithischian dinosaurs were ecologically prominent herbivores of the Mesozoic Era that achieved a global distribution by the onset of the Cretaceous. The ornithischian body plan is aberrant relative to other ornithodiran clades, and crucial details of their early evolution remain obscure. We present a new, fully articulated skeleton of the early branching ornithischian Heterodontosaurus tucki. Phase-contrast enhanced synchrotron data of this new specimen reveal a suite of novel postcranial features unknown in any other ornithischian, with implications for the early evolution of the group. These features include a large, anteriorly projecting sternum; bizarre, paddle-shaped sternal ribs; and a full gastral basket - the first recovered in Ornithischia. These unusual anatomical traits provide key information on the evolution of the ornithischian body plan and suggest functional shifts in the ventilatory apparatus occurred close to the base of the clade. We complement these anatomical data with a quantitative analysis of ornithischian pelvic architecture, which allows us to make a specific, stepwise hypothesis for their ventilatory evolution.


The fossilised skeletons of long extinct dinosaurs are more than just stones. By comparing these remains to their living relatives such as birds and crocodiles, palaeontologists can reveal how dinosaurs grew, moved, ate and socialised. Previous research indicates that dinosaurs were likely warm-blooded and also more active than modern reptiles. This means they would have required breathing mechanisms capable of supplying enough oxygen to allow these elevated activity levels. So far, much of our insight into dinosaur breathing biology has been biased towards dinosaur species more closely related to modern birds, such as Tyrannosaurus rex, as well as the long-necked sauropods. The group of herbivorous dinosaurs known as ornithischians, which include animals with head ornamentation, spikes and heavy body armour, like that found in Triceratops and Stegosaurus, have often been overlooked. As a result, there are still significant gaps in ornithischian biology, especially in understanding how they breathed. Radermacher et al. used high-powered X-rays to study a new specimen of the most primitive ornithischian dinosaur, Heterodontosaurus tucki, and discovered that this South African dinosaur has bones researchers did not know existed in this species. These include bones that are part of the breathing system of extant reptiles and birds, including toothpick-shaped bones called gastralia, paired sternal bones and sternal ribs shaped like tennis rackets. Together, these new pieces of anatomy form a complicated chest skeleton with a large range of motion that would have allowed the body to expand during breathing cycles. But this increased motion of the chest was only possible in more primitive ornithischians. More advanced species lost much of the anatomy that made this motion possible. Radermacher et al. show that while the chest was simpler in advanced species, their pelvis was more specialised and likely played a role in breathing as it does in modern crocodiles. This new discovery could inform the work of biologists who study the respiratory diversity of both living and extinct species. Differences in breathing strategies might be one of the underlying reasons that some lineages of animals go extinct. It could explain why some species do better than others under stressful conditions, like when the climate is warmer or has less oxygen.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Ventilação Pulmonar , Animais , Dinossauros/fisiologia
11.
J Morphol ; 282(5): 701-719, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629391

RESUMO

The avian bronchial tree has a unique and elaborate architecture for the maintenance of unidirectional airflow. Gross descriptions of this bronchial arrangement have traditionally relied upon dissection and casts of the negative (air-filled) spaces. In this study, the bronchial trees of five deceased African grey parrots (Psittacus erithacus) were segmented from micro-computed tomography (µCT) scans into three-dimensional (3D) surface models, and then compared. Select metrics of the primary bronchi and major secondary branches in the µCT scans of 11 specimens were taken to assess left-right asymmetry and quantify gross lung structure. Analysis of the 3D surface models demonstrates variation in the number and distribution of secondary bronchi with consistent direct connections to specific respiratory air sacs. A single model of the parabronchi further reveals indirect connections to all but two of the nine total air sacs. Statistical analysis of the metrics show significant left-right asymmetry between the primary bronchi and the origins of the first four secondary bronchi (the ventrobronchi), consistently greater mean values for all right primary bronchus length metrics, and relatively high coefficients of variation for cross-sectional area metrics of the primary bronchi and secondary bronchi ostia. These findings suggest that the lengths of the primary bronchi distal to the ventrobronchi do not preserve lung symmetry, and that aerodynamic valving can functionally accommodate a wide range of bronchial proportions.


Assuntos
Papagaios , Animais , Pulmão/diagnóstico por imagem , Microtomografia por Raio-X
12.
Clin Imaging ; 76: 116-122, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33592549

RESUMO

Videoconferencing platforms have recently gained wide attention due to the COVID-19 pandemic, both within and outside of the medical community. This article reviews various applications of online meeting technology to the radiologic community, not only in response to the recent pandemic but also thereafter. Various platform features are outlined and discussed, specifically with respect to collaboration, training, and patient care. Platforms reviewed are GoToMeeting, Microsoft Teams, Skype, WebEx, and Zoom.


Assuntos
COVID-19 , Radiologia , Humanos , Pandemias , SARS-CoV-2 , Software
13.
J Anat ; 238(4): 845-873, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345301

RESUMO

The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), three-dimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Evolução Biológica , Brônquios/anatomia & histologia , Pulmão/anatomia & histologia , Struthioniformes/anatomia & histologia , Variação Anatômica , Animais
15.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190140, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31928195

RESUMO

The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstructions of fossils. This improved understanding of respiratory form and function should help to reconstruct key physiological parameters in fossil taxa. We highlight key events in archosaur evolution where respiratory physiology likely played a major role, such as their radiation at a time of relative hypoxia following the Permo-Triassic mass extinction, and their evolution of elevated metabolic rates. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Assuntos
Evolução Biológica , Répteis/fisiologia , Respiração , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Animais , Aves/anatomia & histologia , Aves/fisiologia , Fósseis/anatomia & histologia , Répteis/anatomia & histologia
16.
Anat Rec (Hoboken) ; 303(4): 874-917, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31814308

RESUMO

Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since the discovery of the holotype fragmentary partial postcranial skeleton in 1915. Poposaurus. gracilis is a member of Poposauroidea, an unusually morphologically divergent clade of pseudosuchians containing taxa that are bipedal, quadrupedal, toothed, edentulous, and some individuals with elongated thoracic neural spines (i.e., sails). In 2003, a well preserved, fully articulated, and nearly complete postcranial skeleton of P. gracilis was discovered with some fragmentary cranial elements from the Upper Triassic Chinle Formation of Grand Staircase-Escalante National Monument of southern Utah, USA. The aim of this work is to describe the osteology of this specimen in detail and compare P. gracilis to other closely related pseudosuchian archosaurs. The open neurocentral sutures throughout the majority of the vertebral column, the small size of this individual, and the presence of seven evenly spaced cyclic growth marks in the histologically sectioned femur indicate that this specimen was a skeletally immature juvenile, or subadult when it died. The pes of P. gracilis contains multiple skeletal adaptations and osteological correlates for soft tissue structures that support a hypothesis of digitigrady for this taxon. When coupled with the numerous postcranial characters associated with cursoriality, and the many anatomical traits convergent with theropod dinosaurs, this animal likely occupied a similar ecological niche with contemporaneous theropods during the Late Triassic Period. Anat Rec, 303:874-917, 2020. © 2019 American Association for Anatomy.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Evolução Biológica , América do Norte , Osteologia
17.
R Soc Open Sci ; 5(10): 180983, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30473845

RESUMO

The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds whether an avian-style lung is restricted to birds or first appeared in their dinosaurian ancestors, as common osteological correlates for the respiratory system offer limited information on the lungs themselves. Here, we shed light on these issues by using axial morphology as a direct osteological correlate of lung structure, and quantifying vertebral shape using geometric morphometrics in birds, crocodilians and a wide range of dinosaurian taxa. Although fully avian lungs were a rather late innovation, we quantitatively show that non-avian dinosaurs and basal dinosauriforms possessed bird-like costovertebral joints and a furrowed thoracic ceiling. This would have immobilized the lung's dorsal surface, a structural prerequisite for a thinned blood-gas barrier and increased gas exchange potential. This could have permitted high levels of aerobic and metabolic activity in dinosaurs, even in the hypoxic conditions of the Mesozoic, contributing to their successful radiation.

18.
Comp Med ; 67(2): 112-115, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381311

RESUMO

An adult, male, wild-caught, laboratory-housed green anole (Anolis carolinensis) on a locomotor performance study was presented for anorexia. The anole exhibited a 26% weight loss and a thin body condition but was otherwise alert and active. Despite supportive care, the anole's clinical condition deteriorated, necessitating euthanasia. Postmortem examination revealed a 4.5 mm × 2.5-mm cystic calculus, which consisted entirely of sodium urate. Here we describe the clinical findings and locomotor consequences of this disease in a green anole. Although urolithiasis has been reported clinically in reptiles, this report presents the first case of a cystic calculus in a laboratory-housed green anole.


Assuntos
Lagartos , Cálculos Urinários/veterinária , Urolitíase/veterinária , Animais , Ácido Úrico , Cálculos Urinários/química , Cálculos Urinários/patologia , Urolitíase/patologia
19.
Anat Rec (Hoboken) ; 300(3): 450-459, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27731937

RESUMO

Rodent models are used for a variety of orthopedic research applications; however, anatomy references include mostly artistic representations. Advanced imaging techniques, including micro-computed tomography (microCT), can provide more accurate representations of subtle anatomical characteristics. A recent microCT atlas of laboratory mouse (Mus musculus) anatomy depicts the central and tarsal bone III (T3) as a single bone, differing from previous references. Fusion of tarsal bones is generally characterized as pathological secondary to mutations associated with growth factors, and normal variation has not been documented in the mouse tarsus. Therefore, it is unclear if this fusion is a normal or a pathological characteristic. The aim of this study is to characterize the tarsus of the laboratory mouse and compare it to the rat and selected outgroup species (i.e., white-footed mouse) via microCT and histology to determine if the central and T3 are separate or fused into a single bone. Laboratory mice (C57/Bl6 [n = 17] and BalbC [n = 2]) and rats (n = 5) were scanned with microCT. A representative laboratory mouse from each strain was evaluated histologically via serial sagittal sections through the mid-tarsus. General pedal anatomy was similar between all species; however, the central and T3 bones were fused in all laboratory mice but not the rat or white-footed mouse. A band of hyaline cartilage was identified within the fused bone of the laboratory mice. We conclude that the fusion found is a normal characteristic in laboratory mice, but timing of the fusion remains ambiguous. Anat Rec, 300:450-459, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Variação Anatômica , Articulação do Tornozelo/anatomia & histologia , Tornozelo/anatomia & histologia , Animais , Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos , Ratos , Especificidade da Espécie , Microtomografia por Raio-X
20.
Curr Biol ; 26(14): 1887-94, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27426515

RESUMO

The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event.


Assuntos
Exoesqueleto/anatomia & histologia , Evolução Biológica , Fósseis/anatomia & histologia , Características de História de Vida , Tartarugas/anatomia & histologia , Animais , Locomoção , Filogenia , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA