Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(4): 1069-1085, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633593

RESUMO

The TGFß type II receptor (TßRII) is a central player in all TGFß signaling downstream events, has been linked to cancer progression, and thus, has emerged as an auspicious anti-TGFß strategy. Especially its targeted degradation presents an excellent goal for effective TGFß pathway inhibition. Here, cellular structure-activity relationship (SAR) data from the TßRII degrader chemotype 1 was successfully transformed into predictive ligand-based pharmacophore models that allowed scaffold hopping. Two distinct 3,4-disubstituted indoles were identified from virtual screening: tetrahydro-4-oxo-indole 2 and indole-3-acetate 3. Design, synthesis, and screening of focused amide libraries confirmed 2r and 3n as potent TGFß inhibitors. They were validated to fully recapitulate the ability of 1 to selectively degrade TßRII, without affecting TßRI. Consequently, 2r and 3n efficiently blocked endothelial-to-mesenchymal transition and cell migration in different cancer cell lines while not perturbing the microtubule network. Hence, 2 and 3 present novel TßRII degrader chemotypes that will (1) aid target deconvolution efforts and (2) accelerate proof-of-concept studies for small-molecule-driven TßRII degradation in vivo.

2.
ACS Pharmacol Transl Sci ; 6(11): 1574-1599, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974621

RESUMO

The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.

3.
ACS Pharmacol Transl Sci ; 6(8): 1207-1220, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588754

RESUMO

Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased ß-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.

4.
Arch Pharm (Weinheim) ; 356(6): e2300072, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36978206

RESUMO

Pertuzumab (Perjeta®) is a monoclonal antibody approved for the treatment of HER2-positive breast cancer. Before treatment, the concentrate must be diluted to obtain the ready-to-use infusion solution. Data on the storage stabilities of these preparations are lacking but important for all healthcare professionals in the area of outpatient chemotherapy. The aim of this study was to investigate the storage stability of the ready-to-use infusion bags and the concentrates from once-opened vials over a period of up to 42 days. For a comprehensive and unambiguous assessment of pertuzumab's integrity, a panel of orthogonal analytical methods was employed, including a newly established mass spectrometry-based peptide mapping procedure along with a reporter gene assay for monitoring cellular bioactivity. The herein presented data showed that the ready-to-use infusion solutions stored at 4 ± 2°C and at 20 ± 3°C without light protection, as well as the undiluted Perjeta® concentrates stored at 4 ± 2°C, were physicochemically stable and biologically active for 28 days. These results might eventually allow for infusion preparations in advance, thus improving the quality of patient care as well as the economic usage of pertuzumab.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Estabilidade de Medicamentos
5.
J Med Chem ; 65(24): 16268-16289, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36459434

RESUMO

Identification and analysis of small molecule bioactivity in target-agnostic cellular assays and monitoring changes in phenotype followed by identification of the biological target are a powerful approach for the identification of novel bioactive chemical matter in particular when the monitored phenotype is disease-related and physiologically relevant. Profiling methods that enable the unbiased analysis of compound-perturbed states can suggest mechanisms of action or even targets for bioactive small molecules and may yield novel insights into biology. Here we report the enantioselective synthesis of natural-product-inspired 8-oxotetrahydroprotoberberines and the identification of Picoberin, a low picomolar inhibitor of Hedgehog (Hh)-induced osteoblast differentiation. Global transcriptome and proteome profiling revealed the aryl hydrocarbon receptor (AhR) as the molecular target of this compound and identified a cross talk between Hh and AhR signaling during osteoblast differentiation.


Assuntos
Proteínas Hedgehog , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Diferenciação Celular , Osteoblastos/metabolismo
6.
J Med Chem ; 65(22): 15263-15281, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346705

RESUMO

Phenotypic drug discovery (PDD) continues to fuel the research and development pipelines with first-in-class therapeutic modalities, but success rates critically depend on the quality of the underlying model system. Here, we employed a stem cell-based approach for the target-agnostic, yet pathway-centric discovery of small-molecule cytokine signaling activators to act as morphogens during development and regeneration. Unbiased screening identified triazolo[1,5-c]quinazolines as a new-in-class in vitro and in vivo active amplifier of the bone morphogenetic protein (BMP) pathway. Cellular BMP outputs were stimulated via enhanced and sustained availability of BMP-Smad proteins, strictly dependent on a minimal BMP input. Holistic target deconvolution unveiled a unique mechanism of dual targeting of casein kinase 1 and phosphatidyl inositol 3-kinase isoforms as key effectors for efficient amplification of osteogenic BMP signaling. This work underscores the asset of PDD to discover unrecognized polypharmacology signatures, in this case significantly expanding the chemical and druggable space of BMP modulators.


Assuntos
Proteínas Morfogenéticas Ósseas , Quinazolinas , Triazóis , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Osteogênese , Quinazolinas/farmacologia , Proteínas Smad/metabolismo , Triazóis/farmacologia
7.
Bioorg Med Chem ; 65: 116782, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512484

RESUMO

Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos
8.
J Med Chem ; 65(5): 3978-3990, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35108017

RESUMO

We report on the feasibility to harness embryonic development in vitro for the identification of small-molecule cytokine mimetics and signaling activators. Here, a phenotypic, target-agnostic, high-throughput assay is presented that probes bone morphogenetic protein (BMP) signaling during mesodermal patterning of embryonic stem cells. The temporal discrimination of BMP- and transforming growth factor-ß (TGFß)-driven stages of cardiomyogenesis underpins a selective, authentic orchestration of BMP cues that can be recapitulated for the discovery of BMP activator chemotypes. Proof of concept is shown from a chemical screen of 7000 compounds, provides a robust hit validation workflow, and afforded 2,3-disubstituted 4H-chromen-4-ones as potent BMP potentiators with osteogenic efficacy. Mechanistic studies suggest that Chromenone 1 enhances canonical BMP outputs at the expense of TGFß-Smads in an unprecedented manner. Pharmacophoric features were defined, providing a set of novel chemical probes for various applications in (stem) cell biology, regenerative medicine, and basic research on the BMP pathway.


Assuntos
Proteínas Morfogenéticas Ósseas , Fator de Crescimento Transformador beta , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário , Ensaios de Triagem em Larga Escala , Transdução de Sinais
9.
J Med Chem ; 65(2): 1505-1524, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34818008

RESUMO

Restoring lost heart muscle is an attractive goal for cardiovascular regenerative medicine. One appealing strategy is the therapeutic stimulation of cardiomyocyte proliferation, which inter alia remains challenging due to available assay technologies capturing the complex biology. Here, a high-throughput-formatted phenotypic assay platform was established using rodent whole heart-derived cells to preserve the cellular environment of cardiomyocytes. Several readouts allowed the quantification of cycling cardiomyocytes, including a transgenic H2B-mCherry system for unequivocal, automated detection of cardiomyocyte nuclei. A chemical genetics approach revealed pronounced species differences and furnished pan-kinase inhibitors 5 and 36 as potent and robust inducers of endoreplication and acytokinetic mitosis. Combined profiling of the commonly used p38 MAPK inhibitors SB203580 (1), SB239063 (2) and a novel set of skepinone-L (6) derivatives pointed to off-target effects beyond p38 that might be critical for effective cardiomyocyte cytokinesis. Kinome-focused screening eventually furnished TG003 (38) as a novel candidate for stimulating cardiomyocyte proliferation.


Assuntos
Ciclo Celular , Proliferação de Células , Coração , Ensaios de Triagem em Larga Escala , Sondas Moleculares , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Animais , Camundongos , Ratos , Animais Recém-Nascidos , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Camundongos Endogâmicos C57BL , Mitose , Sondas Moleculares/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
10.
Arch Pharm (Weinheim) ; 354(8): e2100082, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33963608

RESUMO

Small molecules have gained considerable interest in regenerative medicine, as they can effectively modulate cell fates in a spatiotemporal controllable fashion. A continuous challenge in the field represents genuine mimicry or activation of growth factor signaling with small molecules. Here, we selected and profiled three compounds for their capacity to directly or indirectly activate endogenous FGF-2, VEGF, or SHH signaling events in the context of skin regeneration. Phenotypic and functional analysis of primary skin fibroblasts and keratinocytes revealed unique, cell-specific activity profiles for the FGF-2 mimetic SUN11602 and the putative VEGF mimetic ONO-1301. Whereas SUN11602 exclusively stimulated keratinocyte differentiation, ONO-1301 mainly affected the proliferation and migration behavior of fibroblasts. In each skin cell type, both compounds selectively enhanced the expression of MMP1 and VEGFA. A combined small molecule FGF-2/VEGF mimicry may not only improve angiogenesis-related microcirculation but also reduce early fibrosis while facilitating wound remodeling at later stages. SUN11602 and ONO-1301 represent valuable tools for improving the management of difficult-to-heal wounds, particularly for the design and development of small molecule-functionalized, next-generation, engineered skin substitutes.


Assuntos
Benzamidas/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Piridinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Regeneração/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Cicatrização/efeitos dos fármacos
11.
Cell Chem Biol ; 28(5): 625-635.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33503403

RESUMO

Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through ß-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.


Assuntos
Sondas Moleculares/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição TCF/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Animais , Células Cultivadas , Humanos , Masculino , Sondas Moleculares/química , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Xenopus , Peixe-Zebra , beta Catenina/genética , beta Catenina/metabolismo
12.
ChemMedChem ; 16(8): 1283-1289, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33336890

RESUMO

The protozoan parasite Plasmodium falciparum causes the most severe and prevailing form of malaria in sub-Saharan Africa. Previously, we identified the plasmodial lactate transporter, PfFNT, a member of the microbial formate-nitrite transporter family, as a novel antimalarial drug target. With the pentafluoro-3-hydroxy-pent-2-en-1-ones, we discovered PfFNT inhibitors that potently kill P. falciparum parasites in vitro. Four additional human-pathogenic Plasmodium species require attention, that is, P. vivax, most prevalent outside of Africa, and the regional P. malariae, P. ovale and P. knowlesi. Herein, we show that the plasmodial FNT variants are highly similar in terms of protein sequence and functionality. The FNTs from all human-pathogenic plasmodia and the rodent malaria parasite were efficiently inhibited by pentafluoro-3-hydroxy-pent-2-en-1-ones. We further established a phenotypic yeast-based FNT inhibitor screen, and found very low compound cytotoxicity and monocarboxylate transporter 1 off-target activity on human cells, particularly of the most potent FNT inhibitor BH267.meta, allowing these compounds to proceed towards animal model malaria studies.


Assuntos
Antimaláricos/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Pentanonas/farmacologia , Plasmodium/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/toxicidade , Células HEK293 , Células Hep G2 , Humanos , Testes de Sensibilidade Parasitária , Pentanonas/toxicidade
13.
Nat Commun ; 11(1): 5425, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110077

RESUMO

Transcription factors are key protein effectors in the regulation of gene transcription, and in many cases their activity is regulated via a complex network of protein-protein interactions (PPI). The chemical modulation of transcription factor activity is a long-standing goal in drug discovery but hampered by the difficulties associated with the targeting of PPIs, in particular when extended and flat protein interfaces are involved. Peptidomimetics have been applied to inhibit PPIs, however with variable success, as for certain interfaces the mimicry of a single secondary structure element is insufficient to obtain high binding affinities. Here, we describe the design and characterization of a stabilized protein tertiary structure that acts as an inhibitor of the interaction between the transcription factor TEAD and its co-repressor VGL4, both playing a central role in the Hippo signalling pathway. Modification of the inhibitor with a cell-penetrating entity yielded a cell-permeable proteomimetic that activates cell proliferation via regulation of the Hippo pathway, highlighting the potential of protein tertiary structure mimetics as an emerging class of PPI modulators.


Assuntos
Peptidomiméticos , Fatores de Transcrição/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Hippo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Med Chem ; 63(1): 425-432, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31841335

RESUMO

N-(4-Aminobutyl)-N'-(2-methoxyethyl)guanidine (8a) is a potent inhibitor targeting the hDDAH-1 active site (Ki = 18 µM) and derived from a series of guanidine- and amidine-based inhibitors. Its nonamino acid nature leads to high selectivities toward other enzymes of the nitric oxide-modulating system. Crystallographic data of 8a-bound hDDAH-1 illuminated a unique binding mode. Together with its developed N-hydroxyguanidine prodrug 11, 8a will serve as a most widely applicable, pharmacological tool to target DDAH-1-associated diseases.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/química , Guanidinas/química , Amidoidrolases/química , Amidoidrolases/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Guanidinas/síntese química , Guanidinas/metabolismo , Humanos , Ligação Proteica
15.
Front Pharmacol ; 10: 1357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849643

RESUMO

Extracts from the leaves and flowers of Crataegus spp. (i.e., hawthorn species) have been traditionally used with documented preclinical and clinical activities in cardiovascular medicine. Based on reported positive effects on heart muscle after ischemic injury and the overall cardioprotective profile, the present study addressed potential contributions of Crataegus extracts to cardiopoietic differentiation from stem cells. The quantified Crataegus extract WS®1442 stimulated cardiomyogenesis from murine and human embryonic stem cells (ESCs). Mechanistically, this effect was found to be induced by promoting differentiation of cardiovascular progenitor cell populations but not by proliferation. Bioassay-guided fractionation, phytochemical and analytical profiling suggested high-molecular weight ingredients as the active principle with at least part of the activity due to oligomeric procyanidines (OPCs) with a degree of polymerization between 3 and 6 (DP3-6). Transcriptome profiling in mESCs suggested two main, plausible mechanisms: These were early, stress-associated cellular events along with the modulation of distinct developmental pathways, including the upregulation of brain-derived neurotrophic factor (BDNF) and retinoic acid as well as the inhibition of transforming growth factor ß/bone morphogenetic protein (TGFß/BMP) and fibroblast growth factor (FGF) signaling. In addition, WS®1442 stimulated angiogenesis ex vivo in Sca-1+ progenitor cells from adult mice hearts. These in vitro data provide evidence for a differentiation promoting activity of WS®1442 on distinct cardiovascular stem/progenitor cells that could be valuable for therapeutic heart regeneration after myocardial infarction. However, the in vivo relevance of this new pharmacological activity of Crataegus spp. remains to be investigated and active ingredients from bioactive fractions will have to be further characterized.

17.
ChemMedChem ; 14(8): 810-822, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30768867

RESUMO

Innovative therapeutic modalities for pharmacological intervention of transforming growth factorâ€…ß (TGFß)-dependent diseases are of great value. b-Annelated 1,4-dihydropyridines (DHPs) might be such a class, as they induce TGFß receptor type II degradation. However, intrinsic drawbacks are associated with this compound class and were systematically addressed in the presented study. It was possible to install polar functionalities and bioisosteric moieties at distinct sites of the molecules while maintaining TGFß-inhibitory activities. The introduction of a 2-amino group or 7-N-alkyl modification proved to be successful strategies. Aqueous solubility was improved by up to seven-fold at pH 7.4 and 200-fold at pH 3 relative to the parent ethyl 4-(biphenyl-4-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate. The therapeutic potential of the presented DHPs was further underscored in view of a potential dual mode of action: The differentiation of committed human iPSC-derived cardiac progenitor cells (CPCs) was potently stimulated, and the rescue of cardiac fibrosis phenotypes was observed in engineered heart tissue (EHT) constructs.


Assuntos
Di-Hidropiridinas/química , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/farmacologia , Desenho de Fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Ratos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/antagonistas & inibidores , Proteínas Smad/metabolismo , Solubilidade , Relação Estrutura-Atividade , Engenharia Tecidual , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/metabolismo
18.
ChemMedChem ; 14(8): 853-864, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30811852

RESUMO

Indoles are privileged structures in medicinal and bioorganic chemistry that are particularly well suited to serve as platforms for diversity. Among many other therapeutic areas, the indole scaffold has been used to design aromatic compounds useful to interfere with enzymes engaged in the regulation of substrate acylation status, such as sirtuins. However, the planarity of the indole ring is not necessarily optimal for all target enzymes, especially when functionalization with aromatic side chains is required. Replacement of flat scaffolds by nonplanar molecular cores dominated by sp3 hybridization is a common strategy to avoid the disadvantages associated with poor solubility and high promiscuity, while covering less-well-explored areas of chemical space. Thus, we synthesized fragment-like tetrahydroindoles suitable for fragment-based drug discovery as well as a well-characterized small library intended as multipurpose screening compounds. For proof of principle, these compounds were screened against sirtuins 1-3, enzymes known to be addressable by indoles. We found that 2,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamides are potent and selective SIRT2 inhibitors. Compound 16 t displayed an IC50 value of 0.98 µm and could serve as exquisite starting point for hit-to-lead profiling.


Assuntos
Inibidores de Histona Desacetilases/química , Indóis/química , Sirtuína 2/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Indóis/síntese química , Indóis/metabolismo , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/metabolismo , Relação Estrutura-Atividade
19.
Cell Chem Biol ; 25(9): 1095-1106.e23, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30251630

RESUMO

Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method may provide efficient guidance for target candidate selection and prioritization for experimental in-depth evaluation. We identify 5-lipoxygenase (5-LO) as the target of the Wnt pathway inhibitor Lipoxygenin. Lipoxygenin is a non-redox 5-LO inhibitor, modulates the ß-catenin-5-LO complex and induces reduction of both ß-catenin and 5-LO levels in the nucleus. Lipoxygenin and the structurally unrelated 5-LO inhibitor CJ-13,610 promote cardiac differentiation of human induced pluripotent stem cells and inhibit Hedgehog, TGF-ß, BMP, and Activin A signaling, suggesting an unexpected and yet unknown role of 5-LO in these developmental pathways.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Desenho Assistido por Computador , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células NIH 3T3 , Via de Sinalização Wnt/efeitos dos fármacos
20.
J Med Chem ; 61(9): 4087-4102, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29630366

RESUMO

Inhibitors of Wnt production (IWPs) are known antagonists of the Wnt pathway, targeting the membrane-bound O-acyltransferase porcupine (Porcn) and thus preventing a crucial Wnt ligand palmitoylation. Since IWPs show structural similarities to benzimidazole-based CK1 inhibitors, we hypothesized that IWPs could also inhibit CK1 isoforms. Molecular modeling revealed a plausible binding mode of IWP-2 in the ATP binding pocket of CK1δ which was confirmed by X-ray analysis. In vitro kinase assays demonstrated IWPs to be ATP-competitive inhibitors of wtCK1δ. IWPs also strongly inhibited the gatekeeper mutant M82FCK1δ. When profiled in a panel of 320 kinases, IWP-2 specifically inhibited CK1δ. IWP-2 and IWP-4 also inhibited the viability of various cancer cell lines. By a medicinal chemistry approach, we developed improved IWP-derived CK1 inhibitors. Our results suggest that the effects of IWPs are not limited to Porcn, but also might influence CK1δ/ε-related pathways.


Assuntos
Trifosfato de Adenosina/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Idelta/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Wnt/biossíntese , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Ligação Competitiva , Caseína Quinase 1 épsilon/química , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/química , Caseína Quinase Idelta/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA