Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Ann Neurol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738750

RESUMO

OBJECTIVE: For stroke patients with unknown time of onset, mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) can guide thrombolytic intervention. However, access to MRI for hyperacute stroke is limited. Here, we sought to evaluate whether a portable, low-field (LF)-MRI scanner can identify DWI-FLAIR mismatch in acute ischemic stroke. METHODS: Eligible patients with a diagnosis of acute ischemic stroke underwent LF-MRI acquisition on a 0.064-T scanner within 24 h of last known well. Qualitative and quantitative metrics were evaluated. Two trained assessors determined the visibility of stroke lesions on LF-FLAIR. An image coregistration pipeline was developed, and the LF-FLAIR signal intensity ratio (SIR) was derived. RESULTS: The study included 71 patients aged 71 ± 14 years and a National Institutes of Health Stroke Scale of 6 (interquartile range 3-14). The interobserver agreement for identifying visible FLAIR hyperintensities was high (κ = 0.85, 95% CI 0.70-0.99). Visual DWI-FLAIR mismatch had a 60% sensitivity and 82% specificity for stroke patients <4.5 h, with a negative predictive value of 93%. LF-FLAIR SIR had a mean value of 1.18 ± 0.18 <4.5 h, 1.24 ± 0.39 4.5-6 h, and 1.40 ± 0.23 >6 h of stroke onset. The optimal cut-point for LF-FLAIR SIR was 1.15, with 85% sensitivity and 70% specificity. A cut-point of 6.6 h was established for a FLAIR SIR <1.15, with an 89% sensitivity and 62% specificity. INTERPRETATION: A 0.064-T portable LF-MRI can identify DWI-FLAIR mismatch among patients with acute ischemic stroke. Future research is needed to prospectively validate thresholds and evaluate a role of LF-MRI in guiding thrombolysis among stroke patients with uncertain time of onset. ANN NEUROL 2024.

3.
Neuroimaging Clin N Am ; 34(2): 271-280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604711

RESUMO

Acute stroke imaging plays a vital and time-sensitive role in therapeutic decision-making. Current clinical workflows widely use computed tomography (CT) and magnetic resonance (MR) techniques including CT and MR perfusion to estimate the volume of ischemic penumbra at risk for infarction without acute intervention. The use of imaging techniques aimed toward evaluating the metabolic derangements underlying a developing infarct may provide additional information for differentiating the penumbra from benign oligemia and infarct core. The authors review several modalities of metabolic imaging including PET, hydrogen and oxygen spectroscopy, sodium MRI, and pH-weighted MRI.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/patologia , Oxigênio , Acidente Vascular Cerebral/terapia , Imageamento por Ressonância Magnética , Análise Espectral , Tomografia por Emissão de Pósitrons/métodos , Infarto , Concentração de Íons de Hidrogênio
4.
AJNR Am J Neuroradiol ; 45(4): 379-385, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453413

RESUMO

BACKGROUND AND PURPOSE: The use of MR imaging in emergency settings has been limited by availability, long scan times, and sensitivity to motion. This study assessed the diagnostic performance of an ultrafast brain MR imaging protocol for evaluation of acute intracranial pathology in the emergency department and inpatient settings. MATERIALS AND METHODS: Sixty-six adult patients who underwent brain MR imaging in the emergency department and inpatient settings were included in the study. All patients underwent both the reference and the ultrafast brain MR protocols. Both brain MR imaging protocols consisted of T1-weighted, T2/T2*-weighted, FLAIR, and DWI sequences. The ultrafast MR images were reconstructed by using a machine-learning assisted framework. All images were reviewed by 2 blinded neuroradiologists. RESULTS: The average acquisition time was 2.1 minutes for the ultrafast brain MR protocol and 10 minutes for the reference brain MR protocol. There was 98.5% agreement on the main clinical diagnosis between the 2 protocols. In head-to-head comparison, the reference protocol was preferred in terms of image noise and geometric distortion (P < .05 for both). The ultrafast ms-EPI protocol was preferred over the reference protocol in terms of reduced motion artifacts (P < .01). Overall diagnostic quality was not significantly different between the 2 protocols (P > .05). CONCLUSIONS: The ultrafast brain MR imaging protocol provides high accuracy for evaluating acute pathology while only requiring a fraction of the scan time. Although there was greater image noise and geometric distortion on the ultrafast brain MR protocol images, there was significant reduction in motion artifacts with similar overall diagnostic quality between the 2 protocols.


Assuntos
Encefalopatias , Pacientes Internados , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Tempo
5.
J Cereb Blood Flow Metab ; 44(1): 50-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728641

RESUMO

Early prediction of the recovery of consciousness in comatose cardiac arrest patients remains challenging. We prospectively studied task-relevant fMRI responses in 19 comatose cardiac arrest patients and five healthy controls to assess the fMRI's utility for neuroprognostication. Tasks involved instrumental music listening, forward and backward language listening, and motor imagery. Task-specific reference images were created from group-level fMRI responses from the healthy controls. Dice scores measured the overlap of individual subject-level fMRI responses with the reference images. Task-relevant responsiveness index (Rindex) was calculated as the maximum Dice score across the four tasks. Correlation analyses showed that increased Dice scores were significantly associated with arousal recovery (P < 0.05) and emergence from the minimally conscious state (EMCS) by one year (P < 0.001) for all tasks except motor imagery. Greater Rindex was significantly correlated with improved arousal recovery (P = 0.002) and consciousness (P = 0.001). For patients who survived to discharge (n = 6), the Rindex's sensitivity was 75% for predicting EMCS (n = 4). Task-based fMRI holds promise for detecting covert consciousness in comatose cardiac arrest patients, but further studies are needed to confirm these findings. Caution is necessary when interpreting the absence of task-relevant fMRI responses as a surrogate for inevitable poor neurological prognosis.


Assuntos
Coma , Parada Cardíaca , Humanos , Coma/diagnóstico por imagem , Coma/complicações , Imageamento por Ressonância Magnética , Parada Cardíaca/complicações , Parada Cardíaca/diagnóstico por imagem , Prognóstico
6.
J Am Coll Radiol ; 20(11): 1081-1083, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37661045
7.
PLoS One ; 18(3): e0281900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36913348

RESUMO

Machine learning (ML) algorithms to detect critical findings on head CTs may expedite patient management. Most ML algorithms for diagnostic imaging analysis utilize dichotomous classifications to determine whether a specific abnormality is present. However, imaging findings may be indeterminate, and algorithmic inferences may have substantial uncertainty. We incorporated awareness of uncertainty into an ML algorithm that detects intracranial hemorrhage or other urgent intracranial abnormalities and evaluated prospectively identified, 1000 consecutive noncontrast head CTs assigned to Emergency Department Neuroradiology for interpretation. The algorithm classified the scans into high (IC+) and low (IC-) probabilities for intracranial hemorrhage or other urgent abnormalities. All other cases were designated as No Prediction (NP) by the algorithm. The positive predictive value for IC+ cases (N = 103) was 0.91 (CI: 0.84-0.96), and the negative predictive value for IC- cases (N = 729) was 0.94 (0.91-0.96). Admission, neurosurgical intervention, and 30-day mortality rates for IC+ was 75% (63-84), 35% (24-47), and 10% (4-20), compared to 43% (40-47), 4% (3-6), and 3% (2-5) for IC-. There were 168 NP cases, of which 32% had intracranial hemorrhage or other urgent abnormalities, 31% had artifacts and postoperative changes, and 29% had no abnormalities. An ML algorithm incorporating uncertainty classified most head CTs into clinically relevant groups with high predictive values and may help accelerate the management of patients with intracranial hemorrhage or other urgent intracranial abnormalities.


Assuntos
Aprendizado Profundo , Humanos , Incerteza , Tomografia Computadorizada por Raios X/métodos , Hemorragias Intracranianas/diagnóstico por imagem , Algoritmos , Estudos Retrospectivos
8.
Radiol Clin North Am ; 61(3): 415-434, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931759

RESUMO

Ischemic strokes in young adults are increasing in incidence and have emerged as a public health issue. The radiological features are not only diagnostic in identifying ischemic infarctions but also provide important clues in the investigation of the underlying causes or in the identification of risk factors. According to the different imaging patterns associated with ischemic stroke in young adults, the causes can be classified into 5 categories: cardioembolism, large vessel vasculopathy, small vessel vasculopathy, toxic-metabolic, and hypercoagulable disorders. The radiological features of each category and cause are described and summarized in this review.


Assuntos
Infarto , Acidente Vascular Cerebral , Humanos , Adulto Jovem , Fatores de Risco , Infarto/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
9.
Eur Radiol ; 33(4): 2905-2915, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36460923

RESUMO

OBJECTIVES: High-resolution post-contrast T1-weighted imaging is a workhorse sequence in the evaluation of neurological disorders. The T1-MPRAGE sequence has been widely adopted for the visualization of enhancing pathology in the brain. However, this three-dimensional (3D) acquisition is lengthy and prone to motion artifact, which often compromises diagnostic quality. The goal of this study was to compare a highly accelerated wave-controlled aliasing in parallel imaging (CAIPI) post-contrast 3D T1-MPRAGE sequence (Wave-T1-MPRAGE) with the standard 3D T1-MPRAGE sequence for visualizing enhancing lesions in brain imaging at 3 T. METHODS: This study included 80 patients undergoing contrast-enhanced brain MRI. The participants were scanned with a standard post-contrast T1-MPRAGE sequence (acceleration factor [R] = 2 using GRAPPA parallel imaging technique, acquisition time [TA] = 5 min 18 s) and a prototype post-contrast Wave-T1-MPRAGE sequence (R = 4, TA = 2 min 32 s). Two neuroradiologists performed a head-to-head evaluation of both sequences and rated the visualization of enhancement, sharpness, noise, motion artifacts, and overall diagnostic quality. A 15% noninferiority margin was used to test whether post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE. Inter-rater and intra-rater agreement were calculated. Quantitative assessment of CNR/SNR was performed. RESULTS: Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE for delineating enhancing lesions with unanimous agreement in all cases between raters. Wave-T1-MPRAGE was noninferior in the perception of noise (p < 0.001), motion artifact (p < 0.001), and overall diagnostic quality (p < 0.001). CONCLUSION: High-accelerated post-contrast Wave-T1-MPRAGE enabled a two-fold reduction in acquisition time compared to the standard sequence with comparable performance for visualization of enhancing pathology and equivalent perception of noise, motion artifacts and overall diagnostic quality without loss of clinically important information. KEY POINTS: • Post-contrast wave-controlled aliasing in parallel imaging (CAIPI) T1-MPRAGE accelerated the acquisition of three-dimensional (3D) high-resolution post-contrast images by more than two-fold. • Post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE with unanimous agreement between reviewers (100% in 80 cases) for the visualization of intracranial enhancing lesions. • Wave-T1-MPRAGE was equivalent to the standard sequence in the perception of noise in 94% (75 of 80) of cases and was preferred in 16% (13 of 80) of cases for decreased motion artifact.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Artefatos , Movimento (Física)
11.
Eur Radiol ; 32(10): 7128-7135, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35925387

RESUMO

OBJECTIVES: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T. METHODS: In this study, 172 patients undergoing 1.5 T brain MRI were scanned with a more commonly used susceptibility sequence (standard SWI or T2*w-GRE) and a highly accelerated Wave-SWI sequence. Two radiologists blinded to the acquisition technique scored each sequence for visualization of pathology, motion and signal dropout artifacts, image noise, visualization of normal anatomy (vessels and basal ganglia mineralization), and overall diagnostic quality. Superiority testing was performed to compare Wave-SWI to T2*w-GRE, and non-inferiority testing with 15% margin was performed to compare Wave-SWI to standard SWI. RESULTS: Wave-SWI performed superior in terms of visualization of pathology, signal dropout artifacts, visualization of normal anatomy, and overall image quality when compared to T2*w-GRE (all p < 0.001). Wave-SWI was non-inferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall image quality (all p < 0.001). Wave-SWI was superior to standard SWI for motion artifact (p < 0.001), while both conventional susceptibility sequences were superior to Wave-SWI for image noise (p < 0.001). CONCLUSIONS: Wave-SWI can be performed in a 1.5 T clinical setting with robust performance and preservation of diagnostic quality. KEY POINTS: • Wave-SWI accelerated the acquisition of 3D high-resolution susceptibility images in 70% of the acquisition time of the conventional T2*GRE. • Wave-SWI performed superior to T2*w-GRE for visualization of pathology, signal dropout artifacts, and overall diagnostic image quality. • Wave-SWI was noninferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall diagnostic image quality.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos
13.
Resuscitation ; 173: 103-111, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149137

RESUMO

BACKGROUND: Studies of neurologic outcomes have found conflicting results regarding differences between patients with substance-related cardiac arrests (SRCA) and non-SRCA. We investigate the effects of SRCA on severe cerebral edema development, a neuroimaging intermediate endpoint for neurologic injury. METHODS: 327 out-of-hospital comatose cardiac arrest patients were retrospectively analyzed. Demographics and baseline clinical characteristics were examined. SRCA categorization was based on admission toxicology screens. Severe cerebral edema classification was based on radiology reports. Poor clinical outcomes were defined as discharge Cerebral Performance Category scores > 3. RESULTS: SRCA patients (N = 86) were younger (P < 0.001), and more likely to have non-shockable rhythms (P < 0.001), be unwitnessed (P < 0.001), lower Glasgow Coma Scale scores (P < 0.001), absent brainstem reflexes (P < 0.05) and develop severe cerebral edema (P < 0.001) than non-SRCA patients (N = 241). Multivariable analyses found younger age (P < 0.001), female sex (P = 0.008), non-shockable rhythm (P = 0.01) and SRCA (P = 0.05) to be predictors of severe cerebral edema development. Older age (P < 0.001), non-shockable rhythm (P = 0.02), severe cerebral edema (P < 0.001), and absent pupillary light reflexes (P = 0.004) were predictors of poor outcomes. SRCA patients had higher proportion of brain deaths (P < 0.001) compared to non-SRCA patients. CONCLUSIONS: SRCA results in higher rates of severe cerebral edema development and brain death. The absence of statistically significant differences in discharge outcomes or survival between SRCA and non-SRCA patients may be related to the higher rate of withdrawal of life-sustaining treatment (WLST) in the non-SRCA group. Future neuroprognostic studies may opt to include neuroimaging markers as intermediate measures of neurologic injury which are not influenced by WLST decisions.


Assuntos
Edema Encefálico , Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Reanimação Cardiopulmonar/métodos , Coma , Feminino , Escala de Coma de Glasgow , Humanos , Parada Cardíaca Extra-Hospitalar/etiologia , Parada Cardíaca Extra-Hospitalar/terapia , Estudos Retrospectivos
14.
Magn Reson Med ; 87(5): 2380-2387, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985151

RESUMO

PURPOSE: To evaluate the impact of magnetization transfer (MT) on brain tissue contrast in turbo-spin-echo (TSE) and EPI fluid-attenuated inversion recovery (FLAIR) images, and to optimize an MT-prepared EPI FLAIR pulse sequence to match the tissue contrast of a clinical reference TSE FLAIR protocol. METHODS: Five healthy volunteers underwent 3T brain MRI, including single slice TSE FLAIR, multi-slice TSE FLAIR, EPI FLAIR without MT-preparation, and MT-prepared EPI FLAIR with variations of the MT-preparation parameters, including number of preparation pulses, pulse amplitude, and resonance offset. Automated co-registration and gray matter (GM) versus white matter (WM) segmentation was performed using a T1-MPRAGE acquisition, and the GM versus WM signal intensity ratio (contrast ratio) was calculated for each FLAIR acquisition. RESULTS: Without MT preparation, EPI FLAIR showed poor tissue contrast (contrast ratio = 0.98), as did single slice TSE FLAIR. Multi-slice TSE FLAIR provided high tissue contrast (contrast ratio = 1.14). MT-prepared EPI FLAIR closely approximated the contrast of the multi-slice TSE FLAIR images for two combinations of the MT-preparation parameters (contrast ratio = 1.14). Optimized MT-prepared EPI FLAIR provided a 50% reduction in scan time compared to the reference TSE FLAIR acquisition. CONCLUSION: Optimized MT-prepared EPI FLAIR provides comparable brain tissue contrast to the multi-slice TSE FLAIR images used in clinical practice.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Substância Branca/diagnóstico por imagem
15.
Acad Radiol ; 29(6): 888-896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846062

RESUMO

Radiologists communicate along multiple pathways, using written, verbal, and non-verbal means. Radiology trainees must gain skills in all forms of communication, with attention to developing effective professional communication in all forms. This manuscript reviews evidence-based strategies for enhancing effective communication between radiologists and patients through direct communication, written means and enhanced reporting. We highlight patient-centered communication efforts, available evidence, and opportunities to engage learners and enhance training and simulation efforts that improve communication with patients at all levels of clinical care.


Assuntos
Comunicação , Radiologia , Humanos , Radiologistas , Radiologia/educação
16.
Neuroradiology ; 64(5): 925-934, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34664110

RESUMO

PURPOSE: To assess the utility of ASL in evaluating patients presenting to the ED with stroke-like symptoms. METHODS: ASL and DWI images from 526 consecutive patients presenting to the ED with acute stroke symptoms were retrospectively reviewed. DWI images were evaluated for volume of restricted diffusion using ABC/2. ASL maps were evaluated for decreased, normal, or increased signal. The volume of decreased ASL signal was calculated using the same ABC/2 technique. The volume of decreased ASL signal was correlated with the volume of DWI signal abnormality to identify cases of mismatch (DWI:ASL ratio > 1.8) and to correlate this mismatch with infarct growth on imaging follow-up. NIHSS, length of hospital stay, mRS, and future admission for acute stroke-like symptoms were recorded. Correlations between ASL abnormalities and clinical parameters were evaluated using a two-tailed t-test. RESULTS: Of the 526 patients presenting with acute stroke symptoms, 136 patients had an abnormal ASL scan and 388 patients had a normal ASL scan. Of the 136 patients with abnormal ASL, 84 patients had low ASL signal with 79 of these being related to acute infarcts. Elevated ASL signal was seen in 52 patients, of which 30 of these patients had reperfusion hyperemia related to acute infarctions. ASL had a negative predictive value of 94% for evaluating patients with acute ischemic stroke. A subset of patients with abnormal ASL scans with a discharge diagnosis of acute infarction were found to have an ASL:DWI mismatch (ratio > 1.8) and demonstrated significant lesion growth on follow-up imaging (57%). This included some patients who exhibited low ASL signal before development of diffusion restriction (infarction). CONCLUSION: In patients presenting to the ED with acute stroke symptoms, ASL provides information not available with DWI alone. The NPV of ASL for evaluating patients with acute ischemia was 94%.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Imagem de Difusão por Ressonância Magnética/métodos , Serviço Hospitalar de Emergência , Humanos , Infarto , Perfusão , Estudos Retrospectivos , Marcadores de Spin
17.
Acad Radiol ; 29 Suppl 5: S43-S47, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33160861

RESUMO

Structured reports offer overall improvement in quality and safety, largely centered upon more effective communication. Structured reporting is helpful to trainees as a method to develop organized search patterns and include pertinent positive and negative findings. However, limitations of structured report use include lack of development of individualized search patterns and failure to recognize key elements of the report to be formulated in the impression. Instruction on the value of a structured reporting approach, its impact on patient care and clinical service, and compliance with billing requirements must be balanced with early and consistent feedback on appropriate use and reporting errors. It is incumbent upon radiology educators to integrate and optimize structured reporting in the learning environment. This manuscript addresses the impact of structured reporting on radiology education, reviewing quality and safety considerations, detailing benefits and drawbacks for trainees, and offering strategies for optimizing the use of structured reporting/templates in the training environment.


Assuntos
Sistemas de Informação em Radiologia , Radiologia , Humanos , Radiografia , Radiologia/educação
18.
Curr Probl Diagn Radiol ; 50(6): 811-814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34256976

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this manuscript is to elucidate the prevalence, characteristics, outcomes, and perceptions of Alliance of Directors and Vice Chairs of Education in Radiology (ADVICER) members on Clinician Educator Leadership Pathway (CELP) tracks in diagnostic and interventional radiology residency programs in the United States. MATERIALS AND METHODS: IRB exemption was obtained for this study. A 17-question anonymous survey was administered to the ADVICER members, an Association of University Radiologists (AUR) affiliate group, via email once, and then as a reminder 14 days later. Statistical analysis occurred via built-in analytics of the survey vendor, SurveyMonkey. RESULTS: Thirty five of 72 ADVICER members (48.6%) responded to the survey. 45.7% (16/35) respondents indicated the presence of leadership or specialty pathways in their respective residencies. 28.6% of respondents indicated a CELP (10/35) in their residency programs. 92.0% of respondents endorsed CELP as preparatory for an academic career, and 93.6% endorsed development of a national CELP curriculum. CONCLUSION: The majority of radiology residency programs do not have a CELP in their training curriculum. ADVICER leaders overwhelmingly support CELP for professional development of the future educational leaders in radiology and endorse the creation of a national CELP curriculum.


Assuntos
Internato e Residência , Radiologia , Currículo , Humanos , Liderança , Radiografia , Radiologia/educação , Inquéritos e Questionários , Estados Unidos
19.
J Neuroimaging ; 31(5): 893-901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081374

RESUMO

BACKGROUND AND PURPOSE: High-resolution three-dimensional (3D) post-contrast imaging of the brain is essential for comprehensive evaluation of inflammatory, neoplastic, and neurovascular diseases of the brain. 3D T1-weighted spin-echo-based sequences offer increased sensitivity for the detection of enhancing lesions but are relatively prolonged examinations. We evaluated whether a highly accelerated Wave-controlled aliasing in parallel imaging (Wave-CAIPI) post-contrast 3D T1-sampling perfection with application-optimized contrasts using different flip angle evolutions (T1-SPACE) sequence (Wave-T1-SPACE) was noninferior to the standard high-resolution 3D T1-SPACE sequence for visualizing enhancing lesions with comparable diagnostic quality. METHODS: One hundred and three consecutive patients were prospectively evaluated with a standard post-contrast 3D T1-SPACE sequence (acquisition time [TA] = 4 min 19 s) and an optimized Wave-CAIPI 3D T1-SPACE sequence (TA = 1 min 40 s) that was nearly three times faster than the standard sequence. Two blinded neuroradiologists performed a head-to-head comparison to evaluate the visualization of enhancing pathology, perception of artifacts, and overall diagnostic quality. A 15% margin was used to test whether post-contrast Wave-T1-SPACE was noninferior to standard T1-SPACE. RESULTS: Wave-T1-SPACE was noninferior to standard T1-SPACE for delineating parenchymal and meningeal enhancing pathology (p < 0.01). Wave-T1-SPACE showed marginally higher background noise compared to the standard sequence and was noninferior in the overall diagnostic quality (p = 0.03). CONCLUSIONS: Our findings show that Wave-T1-SPACE was noninferior to standard T1-SPACE for visualization of enhancing pathology and overall diagnostic quality with a three-fold reduction in acquisition time compared to the standard sequence. Wave-T1-SPACE may be used to accelerate 3D post-contrast T1-weighted spin-echo imaging without loss of clinically important information.


Assuntos
Gadolínio , Imageamento Tridimensional , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
20.
AJR Am J Roentgenol ; 217(5): 1027-1037, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34106758

RESUMO

The development of reperfusion therapies has profoundly impacted stroke care, initially with the advent of IV thrombolytic treatment and, more recently, with the development and refinement of endovascular treatment (EVT). Progress in neuroim-aging has supported the paradigm shift of stroke care, and advanced neuroimaging now has a fundamental role in triaging patients for both IV thrombolytic treatment and EVT. As the standard of care for acute ischemic stroke (AIS) evolves, controversies remain in certain clinical scenarios. This article explores the use of multimodality imaging for treatment selection of patients with AIS in the context of recent guidelines, highlighting controversial topics and providing guidance for clinical practice. The results of major randomized trials supporting EVT are reviewed. The advantages and disadvantages of CT, CTA, MRI, and MRA in stroke diagnosis are summarized with attention to level 1 evidence supporting the role of vascular imaging and perfusion imaging. Patient selection is compared between approaches based on time thresholds and physiologic approaches based on infarct core measurement using imaging. Moreover, various imaging approaches to core measurement are described. As ongoing studies push treatment boundaries, advanced imaging is expected to help identify a widening range of patients who may benefit from therapy.


Assuntos
AVC Isquêmico/diagnóstico por imagem , Imagem Multimodal , Neuroimagem , Procedimentos Endovasculares , Humanos , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Trombectomia , Terapia Trombolítica , Tempo para o Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA