Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475287

RESUMO

This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2). The dielectric permittivity strongly increases with the nanoparticle concentration according to the Maxwell-Garnet model. Therefore, the investigated composites are suitable for various flexible electronic applications, particularly in the microwave and terahertz frequency ranges. Dielectric dispersion and increased attenuation of ultrasonic waves were observed at lower temperatures (below 280 K) due to the relaxation of polymer molecules at the PDMS/TiO2 interface and in the polymer matrix. The relaxation time followed the Vogel-Vulcher law, while the freezing temperature increased with the titanium dioxide concentration due to interactions between the polymer molecules and nanoparticles. The significant hysteresis in the ultrasonic properties indicated that titanium dioxide acts as a crystallization center. This is confirmed by the correlation between the hysteresis in the ultrasonic properties and the structure of the composites. The small difference in the activation energy values obtained from the ultrasonic and dielectric investigations is related to the fact that the dielectric dispersion is slightly broader than the Debye-type dielectric dispersion.

2.
ACS Omega ; 8(15): 13911-13919, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091415

RESUMO

A series of highly flexible and environmentally friendly composites based on polydimethylsiloxane (PDMS) filled with 200 nm size ferroelectric BaTiO3 (BTO) particles at different concentrations (from 7 to 23 vol %) have been fabricated by a simple dispersion method. The dielectric, piezoelectric, and ultrasonic properties have been studied. The ferroelectric state of BTO was confirmed by differential scanning calorimetry and ultrasonic spectroscopy. The addition of BTO into PDMS strongly affects the dielectric properties of the composites. At low temperatures close to 160 K, the PDMS matrix exhibits a dielectric anomaly related to a dynamic glass transition, which shifts to higher temperatures as the BTO content increases due to the strong interaction between polymer chains and nanoparticles. Ultrasonic measurements demonstrate the appearance of a piezoelectric voltage signal on a thin plate of the composite with the highest available filler concentration (23 vol %) under longitudinal stress applied by a 10 MHz ultrasonic wave. As a result, at room temperature, the detected signal is characterized by output voltage and specific stored energy values of 10 mV and 367.3 MeV/m2, respectively, followed by a further increase with cooling to 35 mV at 150 K. The proposed BTO/PDMS composite system is thus a potential candidate for nanogenerators, namely, a simple, flexible, and lead-free device converting high-frequency (10 MHz) mechanical vibrations into electrical voltage.

3.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805067

RESUMO

Polymer matrix composites filled with carbon nanoparticles are promising materials for many applications, but their properties strongly depend on the particle features, concentration and distribution within the matrix. Here we present a study of the electrical resistivity and the low-frequency voltage fluctuation of composites based on epoxy resin filled with onion-like carbon (OLC) of different sizes (40-250 nm) above the percolation threshold, which should clarify the electrical transport characteristics in these materials. Electrical measurements were performed in the temperature range of 78 to 380 K, and voltage noise analysis was carried out from 10 Hz to 20 kHz. At low temperatures (below 250 K), thermally activated tunneling, variable-range hopping and generation-recombination of charge carriers take place. Above 250 K, the rapid expansion of the matrix with the temperature increases the resistivity, but above ~330 K, the conductivity of the matrix becomes significant. Quasi one-dimensional electrical transport is observed in composites with the smallest particles (40 nm), while in composites with the largest particles (220-250 nm), the dimensionality of the electrical transport is higher. The temperature dependence of the electrical conductivity of composites with smaller particles is more sensitive to matrix expansion.

4.
ACS Appl Mater Interfaces ; 13(10): 12562-12574, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661600

RESUMO

Hydrogen adsorption on activated carbons (ACs) is a promising alternative to compression and liquefaction for storing hydrogen. Herein, we have studied hydrogen adsorption on six commercial ACs (CACs) with surface areas ranging from 996 to 2216 m2 g-1 in a temperature range of 77 to 273 K and pressures up to 15 MPa. Excess hydrogen adsorption capacities of 2.3 to 5.8 wt % were obtained at 77 K and 4 MPa. We demonstrated that, contrary to what is normally done, hydrogen capacity is more accurately predicted by the surface area determined by the nonlocal density functional theory method applied to N2 and CO2 adsorption data than by the Brunauer-Emmett-Teller (BET) area. The modified Dubinin-Astakhov (MDA) equation was used to fit the experimental adsorption data, and the relationship between the MDA parameters (nmax, Va, α, and ß) and the textural properties of the CACs was determined for the first time. We concluded that the nmax and Va parameters are related to the BET area, while the α and ß parameters are related to the average micropore size and total pore volume, respectively. α and ß were used to evaluate the enthalpy and entropy of adsorption and we show that these parameters can be used to assess the best carbon for hydrogen storage or compression.

5.
Materials (Basel) ; 12(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835642

RESUMO

The electromagnetic properties of various carbon gels, produced with different bulk densities, were investigated in a wide frequency range (20 Hz-36 GHz). The values of dielectric permittivity and electrical conductivity at 129 Hz were found to be very high, i.e., more than 105 and close to 100 S/m, respectively. Both strongly decreased with frequency but remained high in the microwave frequency range (close to 10 and about 0.1 S/m, respectively, at 30 GHz). Moreover, the dielectric permittivity and the electrical conductivity strongly increased with the bulk density of the materials, according to power laws at low frequency. However, the maximum of microwave absorption was observed at lower densities. The DC conductivity slightly decreased on cooling, according to the Arrhenius law. The lower activation energies are typical of carbon gels presenting lower DC electrical conductivities, due to a higher number of defects. High and thermally stable electromagnetic properties of carbon gels, together with other unique properties of these materials, such as lightness and chemical inertness, open possibilities for producing new electromagnetic coatings.

6.
ACS Appl Mater Interfaces ; 11(40): 36789-36799, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525014

RESUMO

Activated carbons (ACs) are among the most commonly used sorbents for CO2 capture because of their high surface areas and micropore volumes, which depend on precursor and activation methods. In this study, we evaluated different ACs obtained from a low-value fraction of liquid-derived coal pyrolysis, namely phenolic oil, which was used as gel precursor before carbonization and KOH activation. CO2 capture performances were determined at temperatures between 25 and 120 °C, with CO2 concentrations ranging from 5 to 90 vol %. The most efficient sample captured 2.86 mmol of CO2/g AC at 25 °C and 1 bar, which is a highly competitive capture capacity, comparable to previously reported values for ACs without any modification/functionalization. Finally, their thermal stability and cyclability (i.e., for a minimum of six adsorption-desorption cycles) were evaluated. CO2 uptake was not affected by desorption temperature after six adsorption-desorption cycles. On the basis of the results obtained in this work, the role of the textural properties into the CO2 capture at realistic postcombustion temperatures and partial pressures was elucidated. In particular, we concluded that CO2 adsorption performance was more related to the volume of the narrowest pores and to the average pore size than to the surface area.

7.
Materials (Basel) ; 12(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261692

RESUMO

The implementation of carbon capture and storage process (CCS) has been unsuccessful to date, mainly due to the technical issues and high costs associated with two main stages: (1) CO2 separation from flue gas and (2) CO2 injection in deep geological deposits, more than 300 m, where CO2 is in supercritical conditions. This study proposes, for the first time, an enhanced CCS process (e-CCS), in which the stage of CO2 separation is removed and the flue gas is injected directly in shallow reservoirs located at less than 300 m, where the adsorptive phenomena control CO2 storage. Nitrogen-rich carbon nanospheres were used as modifying agents of the reservoir porous texture to improve both the CO2 adsorption capacity and selectivity. For this purpose, sandstone was impregnated with a nanofluid and CO2 adsorption was evaluated at different pressures (atmospheric pressure and from 3 × 10-3 MPa to 3.0 MPa) and temperatures (0, 25, and 50 °C). As a main result, a mass fraction of only 20% of nanomaterials increased both the surface area and the molecular interactions, so that the increase of adsorption capacity at shallow reservoir conditions (50 °C and 3.0 MPa) was more than 677 times (from 0.00125 to 0.9 mmol g-1).

8.
Rev Sci Instrum ; 90(5): 054901, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153257

RESUMO

Due to the limited size of samples prepared at the lab scale, characterizing the thermal properties of new materials may be problematic, and this makes it all the more difficult to optimize them. This statement especially applies to the development of innovative thermal (super)insulators. In this work, we demonstrate that the hot disk method, which might be preferred for such kinds of studies because of the low sample size it can allow in practice, is unable to provide realistic values of thermal conductivity in the case of insulators. A new method was thus developed, called Calibrated Tiny Hot Plate (CTHP). The corresponding heat transfers were modeled, and the two unknowns of the model were obtained by calibration with insulating samples whose thermal conductivity was precisely measured with a reference (guarded hot plate) method. We show that the CTHP is able to estimate conductivities within the range 0.014-0.2 W m-1 K-1 based on samples having thicknesses ranging from 3 to 9 mm and diameters as low as 15 mm. The accuracy was generally much better than 10%, which is a remarkable result for characterizing so small insulating materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA