Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548390

RESUMO

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Assuntos
Doença de Huntington , Tomografia por Emissão de Pósitrons , Animais , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
2.
Metabolites ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005604

RESUMO

Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma ß-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (-/-) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.

3.
Sci Transl Med ; 14(630): eabm3682, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108063

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with 11C ([11C]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/metabolismo , Ligantes , Doenças Neurodegenerativas/patologia
4.
Sci Rep ; 11(1): 17977, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504195

RESUMO

Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer's disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer's disease patients.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agregados Proteicos/genética , Agregação Patológica de Proteínas/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Autorradiografia/métodos , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Radioisótopos de Nitrogênio/metabolismo , Traçadores Radioativos , Ensaio Radioligante/métodos , Proteínas Recombinantes/metabolismo
5.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34351166

RESUMO

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/química , Proteína Huntingtina/metabolismo , Agregados Proteicos/fisiologia , Piridinas/química , Compostos Radiofarmacêuticos/química , Doença de Alzheimer , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
J Med Chem ; 63(15): 8608-8633, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32662649

RESUMO

Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.


Assuntos
Proteína Huntingtina/análise , Doença de Huntington/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Agregação Patológica de Proteínas/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Cães , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Ligantes , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Compostos Radiofarmacêuticos/análise , Ratos Sprague-Dawley
7.
J Biomol Screen ; 18(8): 868-78, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796689

RESUMO

The resurgence of interest in caspases (Csp) as therapeutic targets for the treatment of neurodegenerative diseases prompted us to examine the suitability of published nonpeptidic Csp-3 and Csp-6 inhibitors for our medicinal chemistry programs. To support this effort, fluorescence-based Csp-2, Csp-3, and Csp-6 enzymatic assays were optimized for robustness against apparent enzyme inhibition caused by redox-cycling or aggregating compounds. The data obtained under these improved conditions challenge the validity of previously published data on Csp-3 and Csp-6 inhibitors for all but one series, namely, the isatins. Furthermore, in this series, it was observed that the nature of the rhodamine-labeled substrate, typically used to measure caspase activity, interfered with the pharmacological sensitivity of the Csp-2 assay. As a result, a liquid chromatography/tandem mass spectrometry-based assay that eliminates label-dependent assay interference was developed for Csp-2 and Csp-3. In these label-free assays, the activity values of the Csp-2 and Csp-3 reference inhibitors were in agreement with those obtained with the fluorogenic substrates. However, isatin 10a was 50-fold less potent in the label-free Csp-2 assay compared with the rhodamine-based fluorescence format, thus proving the need for an orthogonal readout to validate inhibitors in this class of targets highly susceptible to artifactual inhibition.


Assuntos
Inibidores de Caspase/farmacologia , Ensaios Enzimáticos/métodos , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 6/metabolismo , Inibidores de Caspase/química , Cromatografia Líquida/métodos , Desenho de Fármacos , Isatina/química , Isatina/farmacologia , Doenças Neurodegenerativas/metabolismo , Oligopeptídeos/farmacologia , Espectrometria de Massas em Tandem/métodos
8.
J Med Chem ; 55(3): 1021-46, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22224594

RESUMO

Tissue transglutaminase 2 (TG2) is a multifunctional protein primarily known for its calcium-dependent enzymatic protein cross-linking activity via isopeptide bond formation between glutamine and lysine residues. TG2 overexpression and activity have been found to be associated with Huntington's disease (HD); specifically, TG2 is up-regulated in the brains of HD patients and in animal models of the disease. Interestingly, genetic deletion of TG2 in two different HD mouse models, R6/1 and R6/2, results in improved phenotypes including a reduction in neuronal death and prolonged survival. Starting with phenylacrylamide screening hit 7d, we describe the SAR of this series leading to potent and selective TG2 inhibitors. The suitability of the compounds as in vitro tools to elucidate the biology of TG2 was demonstrated through mode of inhibition studies, characterization of druglike properties, and inhibition profiles in a cell lysate assay.


Assuntos
Acrilamidas/síntese química , Proteínas de Ligação ao GTP/antagonistas & inibidores , Doença de Huntington/tratamento farmacológico , Sulfonamidas/síntese química , Transglutaminases/antagonistas & inibidores , Acrilamidas/química , Acrilamidas/farmacologia , Animais , Células CACO-2 , Permeabilidade da Membrana Celular , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
9.
ACS Med Chem Lett ; 3(12): 1024-8, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900424

RESUMO

We report a series of irreversible transglutaminase 2 inhibitors starting from a known lysine dipeptide bearing an acrylamide warhead. We established new SARs resulting in compounds demonstrating improved potency and better physical and calculated properties. Transglutaminase selectivity profiling and in vitro ADME properties of selected compounds are also reported.

10.
ACS Med Chem Lett ; 3(9): 731-5, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900540

RESUMO

A new series of potent TG2 inhibitors are reported that employ a 4-aminopiperidine core bearing an acrylamide warhead. We establish the structure-activity relationship of this new series and report on the transglutaminase selectivity and in vitro ADME properties of selected compounds. We demonstrate that the compounds do not conjugate glutathione in an in vitro setting and have superior plasma stability over our previous series.

11.
Bioorg Med Chem ; 19(19): 5833-51, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21903398

RESUMO

Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.


Assuntos
Inibidores de Caspase , Inibidores de Cisteína Proteinase/síntese química , Desenho de Fármacos , Sítios de Ligação , Caspase 2/metabolismo , Caspase 3/metabolismo , Domínio Catalítico , Linhagem Celular , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Isoquinolinas/química , Simulação de Dinâmica Molecular , Piperidinas/química , Prolina/química , Especificidade por Substrato
12.
J Biomol Screen ; 15(5): 478-87, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20395409

RESUMO

Huntington's disease (HD) is associated with increased expression levels and activity of tissue transglutaminase (TG2), an enzyme primarily known for its cross-linking of proteins. To validate TG2 as a therapeutic target for HD in transgenic models and for eventual clinical development, a selective and brain-permeable inhibitor is required. Here, a comprehensive profiling platform of biochemical and cellular assays is presented which has been established to evaluate the potency, cellular efficacy, subtype selectivity and the mechanism-of-action of known and novel TG2 inhibitors. Several classes of inhibitors have been characterized including: the commonly used pseudo-substrate inhibitors, cystamine and putrescine (which are generally nonspecific for TG2 and therefore not practical for drug development), the various peptidic inhibitors that target the active site cysteine residue (which display excellent selectivity but in general have poor cellular activity), and the allosteric reversible small-molecule hydrazides (which show poor selectivity and a lack of cellular activity and could not be improved despite considerable medicinal chemistry efforts). In addition, a set of inhibitors identified from a collection of pharmacologically active compounds was found to be unselective for TG2. Moreover, inhibition at the guanosine triphosphate binding site has been examined, but apart from guanine nucleotides, no such inhibitors have been identified. In addition, the promising pharmacological profile of a TG2 inhibitor is presented which is currently in lead optimization to be developed as a tool compound.


Assuntos
Bioensaio/métodos , Inibidores Enzimáticos/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Animais , Linhagem Celular , Inibidores Enzimáticos/química , Humanos , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Camundongos , Estrutura Molecular , Proteína 2 Glutamina gama-Glutamiltransferase
13.
Curr Drug Discov Technol ; 1(1): 27-35, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16472217

RESUMO

Driven by growing corporate compound files, the demands of target biology, and attempts to cut cost, the number of solutions to HTS has spiralled. In quick succession new assay technologies and screening platforms are appearing on the market, with the promise of screening faster than ever in low volume high density formats whilst providing high quality data. Within this world of rapid change, Pfizer has applied cutting edge technology to HTS by introducing screening in 1 microl formats utilising single molecule detection technology. Instead of resource intensive in-house development, Pfizer entered into a collaboration with Evotec OAI / Evotec Technologies and introduced their Mark-II EVOscreen platform. In this article we will outline the benefits of the approach taken at Pfizer, Sandwich, and introduce the Mark-II EVOscreen platform, illustrating the potential but also possible pitfalls of HTS miniaturisation.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Tecnologia Farmacêutica , Clonagem Molecular , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos/economia , Polarização de Fluorescência , Corantes Fluorescentes , Indicadores e Reagentes , Nanotecnologia , Fosfotransferases/análise , Fosfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA