Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 66, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514656

RESUMO

Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.

2.
J Biol Chem ; 298(12): 102694, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375639

RESUMO

Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.


Assuntos
Antígeno B7-H1 , Paxilina , Fator de Necrose Tumoral alfa , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Células Endoteliais , Paxilina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tecido Linfoide/metabolismo , Animais , Camundongos , Mutação
3.
Elife ; 102021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843587

RESUMO

The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.


The lymphatic system is a network of ducts that transports fluid, proteins, and immune cells from different organs around the body. Lymph nodes provide pit stops at hundreds of points along this network where immune cells reside, and lymph fluid can be filtered and cleaned. When pathogens, such as viruses or bacteria, enter the body during an infection, fragments of their proteins can get swept into the lymph nodes. These pathogenic proteins or protein fragments activate resident immune cells and kickstart the immune response. Vaccines are designed to mimic this process by introducing isolated pathogenic proteins in a controlled way to stimulate similar immune reactions in lymph nodes. Once an infection has been cleared by the immune system, or a vaccination has triggered the immune system, most pathogenic proteins get cleared away. However, a small number of pathogenic proteins remain in the lymph nodes to enable immune cells to respond more strongly and quickly the next time they see the same pathogen. Yet it is largely unclear how much protein remains for training and how or where it is all stored. Current techniques are not sensitive or long-lived enough to accurately detect and track these small protein deposits over time. Walsh, Sheridan, Lucas, et al. have addressed this problem by developing biological tags that can be attached to the pathogenic proteins so they can be traced. These tags were designed so the body cannot easily break them down, helping them last as long as the proteins they are attached to. Walsh, Sheridan, Lucas et al. tested whether vaccinating mice with the tagged proteins allowed the proteins to be tracked. The method they used was designed to identify individual cell types based on their genetic information along with the tag. This allowed them to accurately map the complex network of cells involved in storing and retrieving archived protein fragments, as well as those involved in training new immune cells to recognize them. These results provide important insights into the protein archiving system that is involved in enhancing immune memory. This may help guide the development of new vaccination strategies that can manipulate how proteins are archived to establish more durable immune protection. The biological tags developed could also be used to track therapeutic proteins, allowing scientists to determine how long cancer drugs, antibody therapies or COVID19 anti-viral agents remain in the body. This information could then be used by doctors to plan specific and personalized treatment timetables for patients.


Assuntos
Antígenos/metabolismo , Linfonodos/metabolismo , Análise de Célula Única , Animais , Apresentação de Antígeno , Antígenos/genética , Antígenos/imunologia , Cavéolas/imunologia , Cavéolas/metabolismo , Células Cultivadas , DNA/genética , DNA/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endocitose , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Linfonodos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/genética , Ovalbumina/imunologia , Ovalbumina/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Oligonucleotídeos Fosforotioatos/genética , Oligonucleotídeos Fosforotioatos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Fatores de Tempo , Distribuição Tecidual , Transcriptoma
4.
Cell Mol Gastroenterol Hepatol ; 11(2): 573-595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32961356

RESUMO

BACKGROUND AND AIMS: As the incidence of nonalcoholic steatohepatitis (NASH) continues to rise, understanding how normal liver functions are affected during disease is required before developing novel therapeutics which could reduce morbidity and mortality. However, very little is understood about how the transport of proteins and cells from the liver by the lymphatic vasculature is affected by inflammatory mediators or during disease. METHODS: To answer these questions, we utilized a well-validated mouse model of NASH and exposure to highly oxidized low density lipoprotein (oxLDL). In addition to single cell sequencing, multiplexed immunofluorescence and metabolomic analysis of liver lymphatic endothelial cells (LEC)s we evaluated lymphatic permeability and transport both in vitro and in vivo. RESULTS: Confirming similarities between human and mouse liver lymphatic vasculature in NASH, we found that the lymphatic vasculature expands as disease progresses and results in the downregulation of genes important to lymphatic identity and function. We also demonstrate, in mice with NASH, that fluorescein isothiocyanate (FITC) dextran does not accumulate in the liver draining lymph node upon intrahepatic injection, a defect that was rescued with therapeutic administration of the lymphatic growth factor, recombinant vascular endothelial growth factor C (rVEGFC). Similarly, exposure to oxLDL reduced the amount of FITC-dextran in the portal draining lymph node and through an LEC monolayer. We provide evidence that the mechanism by which oxLDL impacts lymphatic permeability is via a reduction in Prox1 expression which decreases lymphatic specific gene expression, impedes LEC metabolism and reorganizes the highly permeable lymphatic cell-cell junctions which are a defining feature of lymphatic capillaries. CONCLUSIONS: We identify oxLDL as a major contributor to decreased lymphatic permeability in the liver, a change which is consistent with decreased protein homeostasis and increased inflammation during chronic liver disease.


Assuntos
Lipoproteínas LDL/metabolismo , Fígado/patologia , Vasos Linfáticos/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Junções Intercelulares/patologia , Fígado/imunologia , Vasos Linfáticos/citologia , Vasos Linfáticos/imunologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Permeabilidade , Proteostase/genética , Proteostase/imunologia , RNA-Seq , Análise de Célula Única , Proteínas Supressoras de Tumor/metabolismo
5.
Cell Rep ; 33(2): 108258, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053342

RESUMO

Although the function of the extracellular region of programmed death ligand 1 (PD-L1) through its interactions with PD-1 on T cells is well studied, little is understood regarding the intracellular domain of PD-L1. Here, we outline a major role for PD-L1 intracellular signaling in the control of dendritic cell (DC) migration from the skin to the draining lymph node (dLN). Using a mutant mouse model, we identify a TSS signaling motif within the intracellular domain of PD-L1. The TSS motif proves critical for chemokine-mediated DC migration to the dLN during inflammation. This loss of DC migration, in the PD-L1 TSS mutant, leads to a significant decline in T cell priming when DC trafficking is required for antigen delivery to the dLN. Finally, the TSS motif is required for chemokine receptor signaling downstream of the Gα subunit of the heterotrimeric G protein complex, ERK phosphorylation, and actin polymerization in DCs.


Assuntos
Antígeno B7-H1/metabolismo , Movimento Celular , Células Dendríticas/metabolismo , Derme/citologia , Imunidade , Transdução de Sinais , Actinas/metabolismo , Aminoácidos/genética , Animais , Antígeno B7-H1/química , Antígeno B7-H1/deficiência , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Quimiocina CCL21/farmacologia , Quimiotaxia/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Éxons/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Imunidade/efeitos dos fármacos , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Polimerização , Domínios Proteicos , Receptores CCR7/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Nat Commun ; 10(1): 3181, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320617

RESUMO

Once thought to be a remnant of cell division, the midbody (MB) has recently been shown to have roles beyond its primary function of orchestrating abscission. Despite the emerging roles of post-abscission MBs, how MBs accumulate in the cytoplasm and signal to regulate cellular functions remains unknown. Here, we show that extracellular post-abscission MBs can be internalized by interphase cells, where they reside in the cytoplasm as a membrane-bound signaling structure that we have named the MBsome. We demonstrate that MBsomes stimulate cell proliferation and that MBsome formation is a phagocytosis-like process that depends on a phosphatidylserine/integrin complex, driven by actin-rich membrane protrusions. Finally, we show that MBsomes rely on dynamic actin coats to slow lysosomal degradation and propagate their signaling function. In summary, MBsomes may sometimes serve as intracellular organelles that signal via integrin and EGFR-dependent pathways to promote cell proliferation and anchorage-independent growth and survival.


Assuntos
Comunicação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Organelas/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Integrinas/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilserinas/metabolismo , Transdução de Sinais
7.
Oncotarget ; 8(4): 6742-6762, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28039486

RESUMO

Increased expression of CD147 in pancreatic cancer has been proposed to play a critical role in cancer progression via CD147 chaperone function for lactate monocarboxylate transporters (MCTs). Here, we show for the first time that CD147 interacts with membrane transporters beyond MCTs and exhibits a protective role for several of its interacting partners. CD147 prevents its interacting partner's proteasome-dependent degradation and incorrect plasma membrane localization through the CD147 transmembrane (TM) region. The interactions with transmembrane small molecule and ion transporters identified here indicate a central role of CD147 in pancreatic cancer metabolic reprogramming, particularly with respect to amino acid anabolism and calcium signaling. Importantly, CD147 genetic ablation prevents pancreatic cancer cell proliferation and tumor growth in vitro and in vivo in conjunction with metabolic rewiring towards amino acid anabolism, thus paving the way for future combined pharmacological treatments.


Assuntos
Basigina/metabolismo , Reprogramação Celular , Metabolismo Energético , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias Pancreáticas/metabolismo , Aminoácidos/metabolismo , Animais , Basigina/genética , Sinalização do Cálcio , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA