Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32851973

RESUMO

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


For cells to survive they need to be able to remove faulty or damaged components. The ability to recycle faulty parts is so crucial that some of the molecular machinery responsible is the same across the plant and animal kingdoms. One of the major recycling pathways cells use is autophagy, which labels damaged proteins with molecular tags that say 'eat-me'. Proteins called receptors then recognize these tags and move the faulty component into vesicles that transport the cargo to a specialized compartment that recycles broken parts. Cells make and fold around 40% of their proteins at a site called the endoplasmic reticulum, or ER for short. However, the process of folding and synthesizing proteins is prone to errors. For example, when a cell is under stress this can cause a 'stall' in production, creating a build-up of faulty, partially constructed proteins that are toxic to the cell. There are several quality control systems which help recognize and correct these errors in production. Yet, it remained unclear how autophagy and these quality control mechanisms are linked together. Here, Stephani, Picchianti et al. screened for receptors that regulate the recycling of faulty proteins by binding to the 'eat-me' tags. This led to the identification of a protein called C53, which is found in both plant and animal cells. Microscopy and protein-protein interaction tests showed that C53 moves into transport vesicles when the ER is under stress and faulty proteins start to build-up. Once there, C53 interacts with two proteins embedded in the wall of the endoplasmic reticulum. These proteins form part of the quality control system that senses stalled protein production, labelling the stuck proteins with 'eat-me' tags. Together with C53, they identify and remove half-finished proteins before they can harm the cell. The fact that C53 works in the same way in both plant and human cells suggests that many species might use this receptor to recycle stalled proteins. This has implications for a wide range of research areas, from agriculture to human health. A better understanding of C53 could be beneficial for developing stress-resilient crops. It could also aid research into human diseases, such as cancer and viral infections, that have been linked to C53 and its associated proteins.


Assuntos
Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostase , Humanos , Proteostase/fisiologia , Proteínas Supressoras de Tumor/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(26): 14926-14935, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554495

RESUMO

Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.


Assuntos
Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linhagem Celular , Citocinas/imunologia , Humanos , Lipocalinas/genética , Lipocalinas/imunologia , Conformação Molecular , Piperidinas/química , Piperidinas/farmacologia , Receptores de Antígenos Quiméricos/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/imunologia , Linfócitos T/efeitos dos fármacos
3.
Arch Biochem Biophys ; 689: 108443, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485152

RESUMO

Human peroxidasin 1 (PXDN) is a homotrimeric multidomain heme peroxidase and essential for tissue development and architecture. It has a biosynthetic function and catalyses the hypobromous acid-mediated formation of specific covalent sulfilimine (SN) bonds, which cross-link type IV collagen chains in basement membranes. Currently, it is unknown whether and which domain(s) [i.e. leucine-rich repeat domain (LRR), immunoglobulin domains, peroxidase domain, von Willebrand factor type C domain] of PXDN interact with the polymeric networks of the extracellular matrix (ECM), and how these interactions integrate and regulate the enzyme's cross-linking activity, without imparting oxidative damage to the ECM. In this study, we probed the interactions of four PXDN constructs with different domain compositions with components of a basement membrane extract by immunoprecipitation. Strong binding of the LRR-containing construct was detected with the major ECM protein laminin. Analysis of these interactions by surface plasmon resonance spectroscopy revealed similar kinetics and affinities of binding of the LRR-containing construct to human and murine laminin-111, with calculated dissociation constants of 1.0 and 1.5 µM, respectively. The findings are discussed with respect to the recently published in-solution structures of the PXDN constructs and the proposed biological role of this peroxidase.


Assuntos
Membrana Basal/metabolismo , Laminina/metabolismo , Peroxidases/metabolismo , Animais , Células HEK293 , Humanos , Leucina/química , Leucina/metabolismo , Camundongos , Peroxidases/química , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo
4.
ACS Catal ; 7(11): 7962-7976, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29142780

RESUMO

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Although structure and steady-state kinetics of Clds have been elucidated, many questions remain (e.g., the mechanism of chlorite cleavage and the pH dependence of the reaction). Here, we present high-resolution X-ray crystal structures of a dimeric Cld at pH 6.5 and 8.5, its fluoride and isothiocyanate complexes and the neutron structure at pH 9.0 together with the pH dependence of the Fe(III)/Fe(II) couple, and the UV-vis and resonance Raman spectral features. We demonstrate that the distal Arg127 cannot act as proton acceptor and is fully ionized even at pH 9.0 ruling out its proposed role in dictating the pH dependence of chlorite degradation. Stopped-flow studies show that (i) Compound I and hypochlorite do not recombine and (ii) Compound II is the immediately formed redox intermediate that dominates during turnover. Homolytic cleavage of chlorite is proposed.

5.
FEBS J ; 283(23): 4386-4401, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27758026

RESUMO

Heme biosynthesis in Gram-positive bacteria follows a recently described coproporphyrin-dependent pathway with HemQ catalyzing the decarboxylation of coproheme to heme b. Here we present the first crystal structure of a HemQ (homopentameric coproheme-HemQ from Listeria monocytogenes) at 1.69 Å resolution and the conversion of coproheme to heme b followed by UV-vis and resonance Raman spectroscopy as well as mass spectrometry. The ferric five-coordinated coproheme iron of HemQ is weakly bound by a neutral proximal histidine H174. In the crystal structure of the resting state, the distal Q187 (conserved in Firmicutes HemQ) is H-bonded with propionate p2 and the hydrophobic distal cavity lacks solvent water molecules. Two H2 O2 molecules are shown to be necessary for decarboxylation of the propionates p2 and p4, thereby forming the corresponding vinyl groups of heme b. The overall reaction is relatively slow (kcat /KM = 1.8 × 102 m-1 ·s-1 at pH 7.0) and occurs in a stepwise manner with a three-propionate intermediate. We present the noncovalent interactions between coproheme and the protein and propose a two-step reaction mechanism. Furthermore, the structure of coproheme-HemQ is compared to that of the phylogenetically related heme b-containing chlorite dismutases. DATABASE: Structural data are available in the PDB under the accession number 5LOQ.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Hemina/análogos & derivados , Peróxido de Hidrogênio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Heme/química , Hemeproteínas/química , Hemeproteínas/genética , Hemeproteínas/metabolismo , Hemina/química , Hemina/metabolismo , Ligação de Hidrogênio , Peróxido de Hidrogênio/química , Cinética , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Espectrometria de Massas , Modelos Moleculares , Propionatos/química , Propionatos/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Espectrofotometria , Análise Espectral Raman
6.
Biochemistry ; 55(38): 5398-412, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27599156

RESUMO

Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.


Assuntos
Heme/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Filogenia , Espectrofotometria Ultravioleta
7.
Biosci Rep ; 36(2)2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26858461

RESUMO

Chlorite dismutase (Cld) and HemQ are structurally and phylogenetically closely related haeme enzymes differing fundamentally in their enzymatic properties. Clds are able to convert chlorite into chloride and dioxygen, whereas HemQ is proposed to be involved in the haeme b synthesis of Gram-positive bacteria. A striking difference between these protein families concerns the proximal haeme cavity architecture. The pronounced H-bonding network in Cld, which includes the proximal ligand histidine and fully conserved glutamate and lysine residues, is missing in HemQ. In order to understand the functional consequences of this clearly evident difference, specific hydrogen bonds in Cld from 'Candidatus Nitrospira defluvii' (NdCld) were disrupted by mutagenesis. The resulting variants (E210A and K141E) were analysed by a broad set of spectroscopic (UV-vis, EPR and resonance Raman), calorimetric and kinetic methods. It is demonstrated that the haeme cavity architecture in these protein families is very susceptible to modification at the proximal site. The observed consequences of such structural variations include a significant decrease in thermal stability and also affinity between haeme b and the protein, a partial collapse of the distal cavity accompanied by an increased percentage of low-spin state for the E210A variant, lowered enzymatic activity concomitant with higher susceptibility to self-inactivation. The high-spin (HS) ligand fluoride is shown to exhibit a stabilizing effect and partially restore wild-type Cld structure and function. The data are discussed with respect to known structure-function relationships of Clds and the proposed function of HemQ as a coprohaeme decarboxylase in the last step of haeme biosynthesis in Firmicutes and Actinobacteria.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Heme/química , Modelos Químicos , Oxirredutases/química , Substituição de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/genética , Ligação de Hidrogênio , Mutação de Sentido Incorreto , Oxirredutases/genética
8.
Arch Biochem Biophys ; 574: 18-26, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25748001

RESUMO

Heme b containing chlorite dismutase (Cld) catalyses the conversion of chlorite to chloride and dioxygen which includes an unusual OO bond formation. This review summarizes our knowledge about the interaction of chlorite with heme enzymes and introduces the biological role, phylogeny and structure of functional chlorite dismutases with differences in overall structure and subunit architecture. The paper sums up the available experimental and computational studies on chlorite degradation by water soluble porphyrin complexes as well as a model based on the active site of Cld. Finally, it reports the available biochemical and biophysical data of Clds from different organisms which allow the presentation of a general reaction mechanism. It includes binding of chlorite to ferric Cld followed by subsequent heterolytic OCl bond cleavage leading to the formation of Compound I and hypochlorite, which finally recombine for production of chloride and O2. The role of the Cld-typical distal arginine in catalysis is discussed together with the pH dependence of the reaction and the role of transiently produced hypochlorite in irreversible inactivation of the enzyme.


Assuntos
Cloretos/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Oxirredutases/química , Conformação Proteica , Proteólise
9.
Mol Microbiol ; 96(5): 1053-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25732258

RESUMO

It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 µM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on) = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 µM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.


Assuntos
Cloretos/metabolismo , Cyanothece/enzimologia , Cyanothece/genética , Cyanothece/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Biocatálise , Cianetos/metabolismo , Escherichia coli/genética , Heme , Cinética , Modelos Moleculares , Oxirredutases/isolamento & purificação , Oxigênio/metabolismo , Filogenia , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Arch Biochem Biophys ; 574: 36-48, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25602700

RESUMO

Chlorite dismutase-like proteins are structurally closely related to functional chlorite dismutases which are heme b-dependent oxidoreductases capable of reducing chlorite to chloride with simultaneous production of dioxygen. Chlorite dismutase-like proteins are incapable of performing this reaction and their biological role is still under discussion. Recently, members of this large protein family were shown to be involved in heme biosynthesis in Gram-positive bacteria, and thus the protein was renamed HemQ in these organisms. In the present work the structural and heme binding properties of the chlorite dismutase-like protein from the Gram-positive pathogen Listeria monocytogenes (LmCld) were analyzed in order to evaluate its potential role as a regulatory heme sensing protein. The homopentameric crystal structure (2.0Å) shows high similarity to chlorite-degrading chlorite dismutases with an important difference in the structure of the putative substrate and heme entrance channel. In solution LmCld is a stable hexamer able to bind the low-spin ligand cyanide. Heme binding is reversible with KD-values determined to be 7.2µM (circular dichroism spectroscopy) and 16.8µM (isothermal titration calorimetry) at pH 7.0. Both acidic and alkaline conditions promote heme release. Presented biochemical and structural data reveal that the chlorite dismutase-like protein from L. monocytogenes could act as a potential regulatory heme sensing and storage protein within heme biosynthesis.


Assuntos
Heme/metabolismo , Listeria monocytogenes/enzimologia , Oxirredutases/química , Cianetos/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica
11.
Arch Biochem Biophys ; 574: 108-19, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25575902

RESUMO

Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.


Assuntos
Evolução Biológica , Peroxidases/metabolismo , Catalase/metabolismo , Heme , Modelos Moleculares , Peroxidases/química , Prostaglandina-Endoperóxido Sintases/metabolismo , Conformação Proteica
12.
Biochemistry ; 53(19): 3145-57, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24754261

RESUMO

Chlorite dismutases (Clds) are heme b-containing prokaryotic oxidoreductases that catalyze the reduction of chlorite to chloride with the concomitant release of molecular oxygen. Over time, they are irreversibly inactivated. To elucidate the mechanism of inactivation and investigate the role of the postulated intermediate hypochlorite, the pentameric chlorite dismutase of "Candidatus Nitrospira defluvii" (NdCld) and two variants (having the conserved distal arginine 173 exchanged with alanine and lysine) were recombinantly produced in Escherichia coli. Exchange of the distal arginine boosts the extent of irreversible inactivation. In the presence of the hypochlorite traps methionine, monochlorodimedone, and 2-[6-(4-aminophenoxy)-3-oxo-3H-xanthen-9-yl]benzoic acid, the extent of chlorite degradation and release of molecular oxygen is significantly increased, whereas heme bleaching and oxidative modifications of the protein are suppressed. Among other modifications, hypochlorite-mediated formation of chlorinated tyrosines is demonstrated by mass spectrometry. The data obtained were analyzed with respect to the proposed reaction mechanism for chlorite degradation and its dependence on pH. We discuss the role of distal Arg173 by keeping hypochlorite in the reaction sphere for O-O bond formation.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Ácido Hipocloroso/química , Oxirredutases/química , Oxigênio/química , Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Oxirredução , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Biotechnol J ; 9(4): 461-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24519858

RESUMO

Chlorite is a serious environmental concern, as rising concentrations of this harmful anthropogenic compound have been detected in groundwater, drinking water, and soil. Chlorite dismutases (Clds) are therefore important molecules in bioremediation as Clds catalyze the degradation of chlorite to chloride and molecular oxygen. Clds are heme b-containing oxidoreductases present in numerous bacterial and archaeal phyla. This review presents the phylogeny of functional Clds and Cld-like proteins, and demonstrates the close relationship of this novel enzyme family to the recently discovered dye-decolorizing peroxidases. The available X-ray structures, biophysical and enzymatic properties, as well as a proposed reaction mechanism, are presented and critically discussed. Open questions about structure-function relationships are addressed, including the nature of the catalytically relevant redox and reaction intermediates and the mechanism of inactivation of Clds during turnover. Based on analysis of currently available data, chlorite dismutase from "Candidatus Nitrospira defluvii" is suggested as a model Cld for future application in biotechnology and bioremediation. Additionally, Clds can be used in various applications as local generators of molecular oxygen, a reactivity already exploited by microbes that must perform aerobic metabolic pathways in the absence of molecular oxygen. For biotechnologists in the field of chemical engineering and bioremediation, this review provides the biochemical and biophysical background of the Cld enzyme family as well as critically assesses Cld's technological potential.


Assuntos
Biodegradação Ambiental , Oxirredutases , Oxigênio , Proteínas Arqueais , Proteínas de Bactérias , Cloretos/análise , Cloretos/química , Cloretos/metabolismo , Heme , Oxigênio/análise , Oxigênio/química , Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
14.
Biochemistry ; 53(1): 77-89, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24364531

RESUMO

Chlorite dismutases (Clds) are heme b containing oxidoreductases that convert chlorite to chloride and molecular oxygen. In order to elucidate the role of conserved heme cavity residues in the catalysis of this reaction comprehensive mutational and biochemical analyses of Cld from "Candidatus Nitrospira defluvii" (NdCld) were performed. Particularly, point mutations of the cavity-forming residues R173, K141, W145, W146, and E210 were performed. The effect of manipulation in 12 single and double mutants was probed by UV-vis spectroscopy, spectroelectrochemistry, pre-steady-state and steady-state kinetics, and X-ray crystallography. Resulting biochemical data are discussed with respect to the known crystal structure of wild-type NdCld and the variants R173A and R173K as well as the structures of R173E, W145V, W145F, and the R173Q/W146Y solved in this work. The findings allow a critical analysis of the role of these heme cavity residues in the reaction mechanism of chlorite degradation that is proposed to involve hypohalous acid as transient intermediate and formation of an O═O bond. The distal R173 is shown to be important (but not fully essential) for the reaction with chlorite, and, upon addition of cyanide, it acts as a proton acceptor in the formation of the resulting low-spin complex. The proximal H-bonding network including K141-E210-H160 keeps the enzyme in its ferric (E°' = -113 mV) and mainly five-coordinated high-spin state and is very susceptible to perturbation.


Assuntos
Heme/química , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Cloretos/metabolismo , Cristalografia por Raios X , Cianetos/química , Eletroquímica , Cinética , Modelos Moleculares , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA