Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Invest Dermatol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38401701

RESUMO

The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides additional insights into the molecular mechanism behind AHR-mediated barrier function and identifies potential targets for the treatment of skin barrier diseases.

2.
Microbiome ; 11(1): 227, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849006

RESUMO

BACKGROUND: Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS: An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS: Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Animais , Humanos , Pele/microbiologia , Epiderme , Modelos Animais
3.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333234

RESUMO

The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides novel insights into the molecular mechanism behind AHR-mediated barrier function and potential novel targets for the treatment of skin barrier diseases.

4.
iScience ; 26(4): 106483, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096035

RESUMO

In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.

5.
J Invest Dermatol ; 143(8): 1520-1528.e5, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893939

RESUMO

Ever since the association between FLG loss-of-function variants and ichthyosis vulgaris and atopic dermatitis disease onset was identified, FLGs function has been under investigation. Intraindividual genomic predisposition, immunological confounders, and environmental interactions complicate the comparison between FLG genotypes and related causal effects. Using CRISPR/Cas9, we generated human FLG-knockout (ΔFLG) N/TERT-2G keratinocytes. FLG deficiency was shown by immunohistochemistry of human epidermal equivalent cultures. Next to (partial) loss of structural proteins (involucrin, hornerin, keratin 2, and transglutaminase 1), the stratum corneum was denser and lacked the typical basket weave appearance. In addition, electrical impedance spectroscopy and transepidermal water loss analyses highlighted a compromised epidermal barrier in ΔFLG human epidermal equivalents. Correction of FLG reinstated the presence of keratohyalin granules in the stratum granulosum, FLG protein expression, and expression of the proteins mentioned earlier. The beneficial effects on stratum corneum formation were reflected by the normalization of electrical impedance spectroscopy and transepidermal water loss. This study shows the causal phenotypical and functional consequences of FLG deficiency, indicating that FLG is not only central in epidermal barrier function but also vital for epidermal differentiation by orchestrating the expression of other important epidermal proteins. These observations pave the way to fundamental investigations into the exact role of FLG in skin biology and disease.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Filamentos Intermediários , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Filagrinas , Queratinócitos/metabolismo , Fenótipo
6.
J Invest Dermatol ; 143(8): 1498-1508.e7, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804407

RESUMO

Late cornified envelope (LCE) proteins are small cationic epidermal proteins with antimicrobial properties, and the combined deletion of LCE3B and LCE3C genes is a risk factor for psoriasis that affects skin microbiome composition. In a yeast two-hybrid screen, we identified CYSRT1 as an interacting partner of members of all LCE groups except LCE6. These interactions were confirmed in a mammalian cell system by coimmunoprecipitation. CYSRT1 is a protein of unknown function that is specifically expressed in cutaneous and oral epithelia and spatially colocalizes with LCE proteins in the upper layers of the suprabasal epidermis. Constitutive CYSRT1 expression is present in fully differentiated epidermis and can be further induced in vivo by disruption of the skin barrier upon stratum corneum removal. Transcriptional regulation correlates to keratinocyte terminal differentiation but not to skin bacteria exposure. Similar to LCEs, CYSRT1 was found to have antibacterial activity against Pseudomonas aeruginosa. Comparative gene sequence analysis and protein amino acid alignment indicate that CYSRT1 is highly conserved among vertebrates and has putative antimicrobial activity. To summarize, we identified CYSRT1 in the outer skin layer, where it colocalizes with LCE proteins and contributes to the constitutive epidermal antimicrobial host defense repertoire.


Assuntos
Anti-Infecciosos , Psoríase , Anti-Infecciosos/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Proteínas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Pele/metabolismo , Humanos
7.
Cytokine ; 155: 155895, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569383

RESUMO

Natural Killer (NK) cells belong to the innate lymphoid lineage and are highly present in the human skin. NK cells can produce a range of pro-inflammatory mediators, including cytokines and chemokines. The role of NK(-T) cells in the immune response towards Borrelia burgdorferi infection was studied. The production of interleukin (IL)-6, IL-1ß and interferon-gamma (IFN-γ) by human primary peripheral blood mononuclear cells (PBMCs) exposed to B. burgdorferi was assessed. Interestingly, CD56+ (NK + NK-T) cells were the only cells within the PBMC-fraction that produced IFN-γ during the first 24 h of stimulation. Within the NK(-T) cell fraction, NK cells seemed to be responsible for the IFN-γ production. Since it was previously demonstrated that both TLR2 and NOD2 receptors are involved in the recognition of B. burgdorferi, the expression of both TLR2 and NOD2 mRNA on NK cells was determined. In contrast to TLR2, NOD2 mRNA was upregulated on CD56+ (NK + NK-T) cells after Borrelia exposure. Finally, to unravel the mechanisms underlying erythema migrans (EM) development, crosstalk between CD56+ (NK + NK-T) cells and keratinocytes was investigated. CD56+ (NK + NK-T) cells activated by B. burgdorferi produced soluble mediators strongly inducing the expression of antimicrobial peptides, such as ß-defensin-2 and psoriasin in human keratinocytes. In conclusion, CD56+ (NK + NK-T) cells produced IFN-γ shortly after exposure to B. burgdorferi and released soluble mediators that were able to activate keratinocytes. These observations underscore the important role of CD56+ (NK + NK-T) cells during early host defence when Borrelia burgdorferi enters the human skin during a tick bite.


Assuntos
Borrelia burgdorferi , Borrelia burgdorferi/genética , Antígeno CD56/metabolismo , Humanos , Imunidade Inata , Interferon gama/metabolismo , Células Matadoras Naturais , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/metabolismo
8.
Nat Commun ; 13(1): 2158, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444200

RESUMO

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária Vivax , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Camundongos , Ácido Pantotênico/análogos & derivados , Plasmodium falciparum/genética , Ratos
9.
JID Innov ; 2(1): 100066, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146480

RESUMO

Psoriasis and atopic dermatitis are chronic inflammatory skin diseases characterized by keratinocyte (KC) hyperproliferation and epidermal acanthosis (hyperplasia). The milieu of disease-associated cytokines and soluble factors is considered a mitogenic factor; however, pinpointing the exact mitogens in this complex microenvironment is challenging. We employed organotypic human epidermal equivalents, faithfully mimicking native epidermal proliferation and stratification, to evaluate the proliferative effects of a broad panel of (literature-based) potential mitogens. The KC GF molecule, the T-helper 2 cytokines IL-4 and IL-13, and the psoriasis-associated cytokine IL-17A caused acanthosis by hyperplasia through a doubling in the number of proliferating KCs. In contrast, IFN-γ lowered proliferation, whereas IL-6, IL-20, IL-22, and oncostatin M induced acanthosis not by hyperproliferation but by hypertrophy. The T-helper 2‒cytokine‒mediated hyperproliferation was Jak/signal transducer and activator of transcription 3 dependent, whereas IL-17A and KC GF induced MAPK/extracellular signal‒regulated kinase kinase/extracellular signal‒regulated kinase‒dependent proliferation. This discovery that key regulators in atopic dermatitis and psoriasis are direct KC mitogens not only adds evidence to their crucial role in the pathophysiological processes but also highlights an additional therapeutic pillar for the mode of action of targeting biologicals (e.g., dupilumab) or small-molecule drugs (e.g., tofacitinib) by the normalization of KC turnover within the epidermal compartment.

10.
J Invest Dermatol ; 142(7): 1947-1955.e6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34942199

RESUMO

Late cornified envelope proteins are predominantly expressed in the skin and other cornified epithelia. On the basis of sequence similarity, this 18-member homologous gene family has been subdivided into six groups. The LCE3 proteins have been the focus of dermatological research because the combined deletion of LCE3B and LCE3C genes (LCE3B/C-del) is a risk factor for psoriasis. We previously reported that LCE3B/C-del increases the expression of the LCE3A gene and that LCE3 proteins exert antibacterial activity. In this study, we analyzed the antimicrobial properties of other family members and the role of LCE3B/C-del in the modulation of microbiota composition of the skin and oral cavity. Differences in killing efficiency and specificity between the late cornified envelope proteins and their target microbes were found, and the amino acid content rather than the order of the well-conserved central domain of the LCE3A protein was found responsible for its antibacterial activity. In vivo, LCE3B/C-del correlated with a higher beta-diversity in the skin and oral microbiota. From these results, we conclude that all late cornified envelope proteins possess antimicrobial activity. Tissue-specific and genotype-dependent antimicrobial protein profiles impact skin and oral microbiota composition, which could direct toward LCE3B/C-del‒associated dysbiosis and a possible role for microbiota in the pathophysiology of psoriasis.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo , Microbiota , Psoríase , Proteínas Ricas em Prolina do Estrato Córneo/genética , Deleção de Genes , Predisposição Genética para Doença , Humanos , Microbiota/genética , Polimorfismo de Nucleotídeo Único , Psoríase/genética , Fatores de Risco
11.
Exp Dermatol ; 30(8): 1023-1032, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681572

RESUMO

The epidermal compartment of the skin is regenerated constantly by proliferation of epidermal keratinocytes. Differentiation of a subset of these keratinocytes allows the epidermis to retain its barrier properties. Regulation of keratinocyte fate-whether to remain proliferative or terminally differentiate-is complex and not fully understood. The objective of our study was to assess if DNA methylation changes contribute to the regulation of keratinocyte fate. We employed genome-wide MethylationEPIC beadchip array measuring approximately 850 000 probes combined with RNA sequencing of in vitro cultured non-differentiated and terminally differentiated adult human primary keratinocytes. We did not observe a correlation between methylation status and transcriptome changes. Moreover, only two differentially methylated probes were detected, of which one was located in the TRIM29 gene. Although TRIM29 knock-down resulted in lower expression levels of terminal differentiation genes, these changes were minor. From these results, we conclude that-in our in vitro experimental setup-it is unlikely that changes in DNA methylation have an important regulatory role in terminal keratinocyte differentiation.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Epigenoma/genética , Queratinócitos/metabolismo , Adulto , Proteínas de Ligação a DNA/genética , Humanos , Fatores de Transcrição/genética
13.
Neuromuscul Disord ; 30(10): 833-838, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32988710

RESUMO

Tenascin-X, is an extracellular matrix glycoprotein expressed in skin, muscle, tendons, and blood vessels with an anti-adhesive function. Biallelic Tenascin-X mutations cause classical-like Ehlers-Danlos syndrome. We report a 46-year-old woman with slowly progressive weakness of the lower limbs and myalgia from age 28 years. In the past she had Raynaud's phenomenon, multiple sprains and joint dislocations, conjunctival haemorrhages and a colonic perforation during colonoscopy. Neurologic examination showed moderate asymmetric proximal and axial muscular weakness, distal amyotrophy of 4 limbs, moderate skin hyperextensibility, and hypermobility of distal joints of fingers. Whole body Magnetic Resonance Imaging showed symmetric fatty infiltration of thigh and leg muscles, with predominant atrophy of thighs. Next Generation Sequencing revealed two pathogenic TNXB variants, g.32024681C>G, c.7826-1G>C, and g.32016181dup, c.9998dupA, p.(Asn3333Lysfs*35). Western Blot and immunofluorescence studies confirmed a marked Tenascin-X reduction in both patient's serum and muscle. Here we further detail the clinical and genetic spectrum of a patient with classical-like Ehlers-Danlos syndrome and prominent muscle involvement.


Assuntos
Progressão da Doença , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/fisiopatologia , Debilidade Muscular/fisiopatologia , Tenascina/genética , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Debilidade Muscular/diagnóstico , Debilidade Muscular/etiologia , Linhagem
14.
J Dermatol ; 47(10): 1110-1118, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32804417

RESUMO

Microbiota live in a closely regulated interaction with their environment, and vice versa. The presence and absence of microbial entities is greatly influenced by features of the niche in which they thrive. Characteristic of this phenomenon is that different human skin sites harbor niche-specific communities of microbes. Microbial diversity is considerable, and the current challenge lies in determining which microbes and (corresponding) functionality are of importance to a given ecological niche. Furthermore, as there is increasing evidence of microbial involvement in health and disease, the need arises to fundamentally understand microbiome processes for application in health care, nutrition and personal care products (e.g. diet, cosmetics, probiotics). This review provides a current overview of state-of-the-art sequencing-based techniques and corresponding data analysis methodology for profiling of complex microbial communities. Furthermore, we also summarize the existing knowledge regarding cutaneous microbiota and their human host for a wide range of skin diseases.


Assuntos
Microbiota , Probióticos , Biologia , Dieta , Humanos , Pele
15.
Exp Dermatol ; 29(7): 672-676, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506526

RESUMO

In biomedical research, cell culture contamination is one of the main culprits of experimental failure. Contamination sources and concomitant remedies are numerous and challenging to manage. We herein describe two cases of uncommon contamination of cell cultures that we encountered, and the successful determination and eradication strategies. The first case describes the infection with human adenovirus C that originated from pharyngeal tonsils used for isolation of primary tonsillar epithelial cells. It is known that viral contamination of in vitro cell cultures can occur symptomless and is therefore difficult to identify. The contamination was pervasive and persistent, as it was widely spread in flow cabinets and apparatus, and has caused a serious delay to our research projects and the inevitable loss of valuable (patient-derived) cell sources. Eradication was successful by formalin gas sterilization of the flow cabinet and elimination of all infected cell lines from our biobank after PCR-guided determination. Secondly, we encountered a spore-forming bacterium, namely Brevibacillus brevis, in our cell culture facility. This bacterium originated from contaminated tap water pipes and spread via regular aseptic culture techniques due to survival of the bacterial spores in 70% ethanol. B brevis overgrew the cultures within a few days after seeding of the primary cells. Chlorine solution effectively killed this spore-forming bacterium. Both cases of contamination were identified using DNA sequencing which enabled the deployment of targeted aseptic techniques for the elimination of the persistent contamination.


Assuntos
Adenovírus Humanos , Brevibacillus , Cultura Primária de Células , Tonsila Faríngea/citologia , Tonsila Faríngea/virologia , Adenovírus Humanos/isolamento & purificação , Brevibacillus/isolamento & purificação , DNA Bacteriano/análise , DNA Viral/análise , Descontaminação/métodos , Células Epiteliais , Contaminação de Equipamentos , Humanos , Engenharia Sanitária , Análise de Sequência de DNA , Microbiologia da Água
16.
Matrix Biol Plus ; 6-7: 100021, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543019

RESUMO

Cancer is a systemic disease involving multiple components produced from both tumor cells themselves and surrounding stromal cells. The pro- or anti-tumoral role of the stroma is still under debate. Indeed, it has long been considered the main physical barrier to the diffusion of chemotherapy by its dense and fibrous nature and its poor vascularization. However, in murine models, the depletion of fibroblasts, the main ExtraCellular Matrix (ECM)-producing cells, led to more aggressive tumors even though they were more susceptible to anti-angiogenic and immuno-modulators. Tenascin-C (TNC) is a multifunctional matricellular glycoprotein (i.e. an ECM protein also able to induce signaling pathway) and is considered as a marker of tumor expansion and metastasis. However, the status of other tenascin (TN) family members and particularly Tenascin-X (TNX) has been far less studied during this pathological process and is still controversial. Herein, through (1) in silico analyses of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and (2) immunohistochemistry staining of Tissue MicroArrays (TMA), we performed a large and extensive study of TNX expression at both mRNA and protein levels (1) in the 6 cancers with the highest incidence and mortality in the world (i.e. lung, breast, colorectal, prostate, stomach and liver) and (2) in the cancers for which sparse data regarding TNX expression already exist in the literature. We thus demonstrated that, in most cancers, TNX expression is significantly downregulated during cancer progression and we also highlighted, when data were available, that high TNXB mRNA expression in cancer is correlated with a good survival prognosis.

17.
J Invest Dermatol ; 140(2): 415-424.e10, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31344386

RESUMO

Skin colonization by Staphylococcus aureus and its relative abundance is associated with atopic dermatitis (AD) disease severity and treatment response. Low levels of antimicrobial peptides in AD skin may be related to the microbial dysbiosis. Therapeutic targeting of the skin microbiome and antimicrobial peptide expression can, therefore, restore skin homeostasis and combat AD. In this study, we analyzed the cutaneous microbiome composition in 7 patients with AD and 10 healthy volunteers upon topical coal tar or vehicle treatment. We implemented and validated a Staphylococcus-specific single-locus sequence typing approach combined with classic 16S ribosomal RNA marker gene sequencing to study the bacterial composition. During coal tar treatment, Staphylococcus abundance decreased, and Propionibacterium abundance increased, suggesting a shift of the microbiota composition toward that of healthy controls. We, furthermore, identified a hitherto unknown therapeutic mode of action of coal tar, namely the induction of keratinocyte-derived antimicrobial peptides via activation of the aryl hydrocarbon receptor. Restoring antimicrobial peptide levels in AD skin via aryl hydrocarbon receptor-dependent transcription regulation can be beneficial by creating a (anti)microbial milieu that is less prone to infection and inflammation. This underscores the importance of coal tar in the therapeutic aryl hydrocarbon receptor armamentarium and highlights the aryl hydrocarbon receptor as a target for drug development.


Assuntos
Anti-Infecciosos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Alcatrão/farmacologia , Dermatite Atópica/tratamento farmacológico , Disbiose/tratamento farmacológico , Microbiota/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/agonistas , Pele/microbiologia , Administração Cutânea , Adulto , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Linhagem Celular , Alcatrão/uso terapêutico , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Disbiose/imunologia , Disbiose/microbiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Queratinócitos , Masculino , Microbiota/imunologia , Pessoa de Meia-Idade , Cultura Primária de Células , Propionibacterium/imunologia , Propionibacterium/isolamento & purificação , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Creme para a Pele/farmacologia , Creme para a Pele/uso terapêutico , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
18.
Can Urol Assoc J ; 14(4): E128-E136, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31702543

RESUMO

INTRODUCTION: To consider alternative mechanisms that give rise to a refluxing ureterovesical junction (UVJ), we hypothesized that children with a common heritable urinary tract defect, vesicoureteric reflux (VUR), may have a defect in the extracellular matrix composition of the UVJ and other tissues that would be revealed by assessment of the peripheral joints. Hypermobile joints can arise from defects in the extracellular matrix within the joint capsule that affect proteins, including tenascin XB (TNXB). METHODS: We performed an observational study of children with familial and non-familial VUR to determine the prevalence of joint hypermobility, renal scarring, and DNA sequence variants in TNXB. RESULTS: Most children (27/44) exhibited joint hypermobility using the Beighton scoring system. This included 15/26 girls (57.7%) and 12/18 boys (66.7%), which is a significantly higher prevalence for both sexes when compared to population controls (p<0.005). We found no association between joint hypermobility and renal scarring. Seven of 49 children harbored rare pathogenic sequence variants in TNXB, and two also exhibited joint hypermobility. No sequence variants in TNXB were identified in 25/27 children with VUR and joint hypermobility. Due to the observational design of the study, there was missing data for joint hypermobility scores in six children and for dimercaptosuccinic acid (DMSA) scans in 17 children. CONCLUSIONS: We observed a high prevalence of VUR and joint hypermobility in children followed within a tertiary care pediatric urology clinic. While mutations in TNXB have been reported in families with VUR and joint hypermobility, we identified only two children with these phenotypes and pathogenic variants in TNXB. We, therefore, speculate that VUR and joint hypermobility may be due to mutations in other extracellular matrix genes.

19.
Sci Rep ; 9(1): 19834, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882601

RESUMO

We present TaxPhlAn, a new method and bioinformatics pipeline for design and analysis of single-locus sequence typing (SLST) markers to type and profile bacteria beyond the species-level in a complex microbial community background. TaxPhlAn can be applied to any group of phylogenetically-related bacteria, provided reference genomes are available. As TaxPhlAn requires the SLST targets identified to fit the phylogenetic pattern as determined through comprehensive evolutionary reconstruction of input genomes, TaxPhlAn allows for the identification and phylogenetic inference of new biodiversity. Here, we present a clinically relevant case study of high-resolution Staphylococcus profiling on skin of atopic dermatitis (AD) patients. We demonstrate that SLST enables profiling of cutaneous Staphylococcus members at (sub)species level and provides higher resolution than current 16S-based techniques. With the higher discriminative ability provided by our approach, we further show that the presence of Staphylococcus capitis on the skin together with Staphylococcus aureus associates with AD disease.


Assuntos
Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Biologia Computacional/métodos , Genes Bacterianos/genética , Microbiota/genética , Bactérias/classificação , Dermatite Atópica/microbiologia , Feminino , Humanos , Masculino , Filogenia , Pele/microbiologia , Pele/patologia , Especificidade da Espécie , Infecções Estafilocócicas/microbiologia , Staphylococcus/classificação , Staphylococcus/genética , Staphylococcus/fisiologia , Fluxo de Trabalho
20.
Nat Commun ; 10(1): 4703, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619666

RESUMO

Despite recent advances in understanding microbial diversity in skin homeostasis, the relevance of microbial dysbiosis in inflammatory disease is poorly understood. Here we perform a comparative analysis of skin microbial communities coupled to global patterns of cutaneous gene expression in patients with atopic dermatitis or psoriasis. The skin microbiota is analysed by 16S amplicon or whole genome sequencing and the skin transcriptome by microarrays, followed by integration of the data layers. We find that atopic dermatitis and psoriasis can be classified by distinct microbes, which differ from healthy volunteers microbiome composition. Atopic dermatitis is dominated by a single microbe (Staphylococcus aureus), and associated with a disease relevant host transcriptomic signature enriched for skin barrier function, tryptophan metabolism and immune activation. In contrast, psoriasis is characterized by co-occurring communities of microbes with weak associations with disease related gene expression. Our work provides a basis for biomarker discovery and targeted therapies in skin dysbiosis.


Assuntos
Dermatite Atópica/genética , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Psoríase/genética , Pele/metabolismo , Pele/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Dermatite Atópica/microbiologia , Disbiose/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Psoríase/microbiologia , RNA Ribossômico 16S , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA